EXERCISE SHEET NO. 1 FOR COMPUTABILITY IN MATHEMATICS

Exercise 1. (Turing Machine manipulations - 4 Points)

a) Implement Euclid's algorithm for the gcd on a Turing machine.
b) Give a machine that, on input a word, rewrites this word moved one left on the tape, and one that moves it to the right.
Use this to describe an "insertion"move for Turing machines: expressiveness of Turing machines is not increased by allowing them to insert a tape symbol at a desired position, instead of rewriting over what there is.

Exercise 2. (Composition is computable - 4 Points)

a) Show that if $f: \subseteq A^{*} \rightarrow A^{*}$ is computable, then it can be computed by a machine M, with initial state q_{0} and final state q_{f}, such that for any $w \operatorname{in} \operatorname{dom}(f), q_{0} w \rightarrow_{M}^{*} q_{f} f(w)$.
(In other words: the machine computes f and then positions correctly its reading head at the beginning of the output.)
Prove that the composition of computable functions is computable.
b) Strengthen the previous point in a uniform way: show that the map which associates to a pair of codes for Turing machines the code of a machine that computes their composition is computable.
This could simply be phrased as: "show that the composition function $\circ: \mathcal{P C} \times \mathcal{P C} \rightarrow \mathcal{P C}$ is computable".

Exercise 3. (Cantor Pairing functions - 3 Points)

Cantor's Pairing function is the map $\pi:(x, y) \mapsto\left(x^{2}+2 x y+3 x+y^{2}+y\right) / 2$.
a) Justify that, restricted to the set $A_{u}, u \in \mathbb{N}$, given by $A_{u}=\left\{(x, y) \in \mathbb{N}^{2}, x+y=u\right\}, \pi$ realizes a bijection onto $\left\{\left(u^{2}+u\right) / 2, \ldots,\left(u^{2}+3 u\right) / 2\right\}$
b) Justify that if $x+y \neq z+t, \pi(x, y) \neq \pi(z, t)$.
c) Show that π is a bijection.

Exercise 4. (Left Moves in a TM - 4 Points)

Prove that it is decidable whether a Turing machine ever in its computation for a given input moves the tape pointer to the left. Hint: Understand the case of input having size 0 first.

The solutions to this exercise sheet should be submitted until May 2nd at 8am in the letterbox no. 41. Please note full name and matriculation number on your submission.

