Project Ideas

Beginner Difficulty (Difficulty Bonus = 1.0)

1. Analysing the behavior of different retry algorithms under different workloads and
load spikes. Requires the analysis of the following retry algorithms (note that some
may already be implemented in Blueprint; others you will need to implement yourself
as Blueprint plugins)

-0 Q00T oD

No retries (baseline)

Fixed Instantaneous Retries

Fixed Delay Retries

Exponential Backoff Retries Without Jitter
Exponential Backoff Retries With Jitter

Token Bucket Retries (Pseudocode available here:

https://docs.aws.amazon.com/sdkref/latest/quide/feature-retry-behavior.html)

2. Reproducing the Laser of Death emergent misbehavior with Blueprint.

a.

More information about the behavior here:
https://www.usenix.org/publications/loginonline/why-health-check-sidewalk
Requires implementing a load balancer that maintains state based on health
checks
i. Subsequent integration with Blueprint so that this is easily testable on
existing applications

3. Implementing a runtime causal inference service for root cause analysis that can be
integrated with Blueprint.

a.

Runtime Causal Inference Service should periodically get traces from Jaeger,
find the anomalous traces (>99th percentile latency), and then do root cause
analysis using causal inference.

Requires automatically figuring out the causal graph from the application
workflow.

Requires doing offline training for the causal model

Service should be implemented in Python and be available as a Docker
container (which can then be integrated with Blueprint)

More Information on how to do Root Cause Analysis with Python:
https://www.pywhy.org/dowhy/v0.8/example notebooks/rca_microservice arc
hitecture.html

4. Implementing a critical path analysis service that can be integrated with Blueprint.

a.

C.

Critical Path Analysis Service should periodically get traces from Jaeger,
calculate the critical path for each trace, and store statistics about the
common paths.
Implement a causal path diff that compares the critical path of an anomalous
trace (e.g. >99th percentile latency) with some critical paths of the same type
of request.
More information on how to calculate critical paths
i. Paper: https://www.usenix.org/system/files/atc22-zhang-zhizhou.pdf
ii. Code: https://github.com/uber-research/CRISP/tree/main

https://docs.aws.amazon.com/sdkref/latest/guide/feature-retry-behavior.html
https://www.usenix.org/publications/loginonline/why-health-check-sidewalk
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://www.usenix.org/system/files/atc22-zhang-zhizhou.pdf
https://github.com/uber-research/CRISP/tree/main

5. Integrating FIRM's fault injector with Blueprint as a plugin for injecting different types
of faults into the system.

a. FIRM Paper: https://www.usenix.org/system/files/osdi20-qgiu.pdf
b. FIRM Code:

https://gitlab.engr.illinois.edu/DEPEND/firm/-/tree/master/anomaly-injector
c. Use this to show the noisy neighbor effect and how that can potentially lead to
a metastability failure (Capacity Degradation Trigger + Workload
Amplification)
6. Implement and analyze prioritized load shedding and compare its behavior to circuit
breakers in dealing with metastability failures
a. Netflix Prioritized Load-Shedding:
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shed
ding-6¢c827b02f94
b. Netflix Service Level Load Shedding:
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-priorit
ized-load-shedding-e735e6¢e8f7d
7. Show the impact and benefits of autoscaling with Kubernetes
a. Requires integrating Kubernetes with Blueprint
b. Must be done in a 3-person team.

Intermediate Difficulty (Difficulty Bonus > 1.0, <
2.0)

1. Integrate Hindsight with Blueprint

a. Steps required:

KuZvu1w000ZgWmK1mxurANY
wer|VIr|oNH7MmY/ed|t’?uso sharmq)

b. Hindsight Paper: https://www.usenix.org/system/files/nsdi23-zhang-lei.pdf

2. Integrate Metafor (metastability analysis library) with Blueprint.

a. This will basically require converting the Blueprint workflows into the DSL by
Metafor. Each API maps into Work. Each Service has a Server and a Client
configured.

b. Library: https://github.com/mpi-sws-rse/metafor/tree/main

c. Paper: https://sigops.org/s/conferences/hotos/2025/papers/hotos25-106.pdf

3. Integrate Blueprint with TLA+.

a. Possibility #1: Generate Blueprint workflows into TLA+ programs.

b. Possibility #2: Generate Blueprint workflows from TLA+ programs (or Modular
PlusCal) to get integration with PGo

i. PGo Paper: https://www.cs.ubc.ca/~bestchai/papers/asplos23-pgo.pdf

ii. PGo Code: https://github.com/DistCompiler/pgo
4. Integrating Blueprint with OpperTune to allow for parameter tuning.

a. OpperTune Paper:
https://www.usenix.org/system/files/nsdi24-somashekar.pdf

b. OpperTune Code: https://github.com/microsoft/OPPerTune/tree/main
5. Integrating Blueprint with MuCache

https://www.usenix.org/system/files/osdi20-qiu.pdf
https://gitlab.engr.illinois.edu/DEPEND/firm/-/tree/master/anomaly-injector
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://www.usenix.org/system/files/nsdi23-zhang-lei.pdf
https://github.com/mpi-sws-rse/metafor/tree/main
https://sigops.org/s/conferences/hotos/2025/papers/hotos25-106.pdf
https://www.cs.ubc.ca/~bestchai/papers/asplos23-pgo.pdf
https://github.com/DistCompiler/pgo
https://www.usenix.org/system/files/nsdi24-somashekar.pdf
https://github.com/microsoft/OPPerTune/tree/main

a. MuCache paper:
https://angelhof.qithub.io/files/papers/mucache-2024-nsdi.pdf

b. MuCache code: https://github.com/eniac/mucache

https://angelhof.github.io/files/papers/mucache-2024-nsdi.pdf
https://github.com/eniac/mucache

	Project Ideas
	Beginner Difficulty (Difficulty Bonus = 1.0)
	Intermediate Difficulty (Difficulty Bonus > 1.0, < 2.0)

