
Project Ideas

Beginner Difficulty (Difficulty Bonus = 1.0)
1.​ Analysing the behavior of different retry algorithms under different workloads and

load spikes. Requires the analysis of the following retry algorithms (note that some
may already be implemented in Blueprint; others you will need to implement yourself
as Blueprint plugins)

a.​ No retries (baseline)
b.​ Fixed Instantaneous Retries
c.​ Fixed Delay Retries
d.​ Exponential Backoff Retries Without Jitter
e.​ Exponential Backoff Retries With Jitter
f.​ Token Bucket Retries (Pseudocode available here:

https://docs.aws.amazon.com/sdkref/latest/guide/feature-retry-behavior.html)
2.​ Reproducing the Laser of Death emergent misbehavior with Blueprint.

a.​ More information about the behavior here:
https://www.usenix.org/publications/loginonline/why-health-check-sidewalk

b.​ Requires implementing a load balancer that maintains state based on health
checks

i.​ Subsequent integration with Blueprint so that this is easily testable on
existing applications

3.​ Implementing a runtime causal inference service for root cause analysis that can be
integrated with Blueprint.

a.​ Runtime Causal Inference Service should periodically get traces from Jaeger,
find the anomalous traces (>99th percentile latency), and then do root cause
analysis using causal inference.

b.​ Requires automatically figuring out the causal graph from the application
workflow.

c.​ Requires doing offline training for the causal model
d.​ Service should be implemented in Python and be available as a Docker

container (which can then be integrated with Blueprint)
e.​ More Information on how to do Root Cause Analysis with Python:

https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_arc
hitecture.html

4.​ Implementing a critical path analysis service that can be integrated with Blueprint.
a.​ Critical Path Analysis Service should periodically get traces from Jaeger,

calculate the critical path for each trace, and store statistics about the
common paths.

b.​ Implement a causal path diff that compares the critical path of an anomalous
trace (e.g. >99th percentile latency) with some critical paths of the same type
of request.

c.​ More information on how to calculate critical paths
i.​ Paper: https://www.usenix.org/system/files/atc22-zhang-zhizhou.pdf
ii.​ Code: https://github.com/uber-research/CRISP/tree/main

https://docs.aws.amazon.com/sdkref/latest/guide/feature-retry-behavior.html
https://www.usenix.org/publications/loginonline/why-health-check-sidewalk
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://www.pywhy.org/dowhy/v0.8/example_notebooks/rca_microservice_architecture.html
https://www.usenix.org/system/files/atc22-zhang-zhizhou.pdf
https://github.com/uber-research/CRISP/tree/main

5.​ Integrating FIRM's fault injector with Blueprint as a plugin for injecting different types
of faults into the system.

a.​ FIRM Paper: https://www.usenix.org/system/files/osdi20-qiu.pdf
b.​ FIRM Code:

https://gitlab.engr.illinois.edu/DEPEND/firm/-/tree/master/anomaly-injector
c.​ Use this to show the noisy neighbor effect and how that can potentially lead to

a metastability failure (Capacity Degradation Trigger + Workload
Amplification)

6.​ Implement and analyze prioritized load shedding and compare its behavior to circuit
breakers in dealing with metastability failures

a.​ Netflix Prioritized Load-Shedding:
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shed
ding-6cc827b02f94

b.​ Netflix Service Level Load Shedding:
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-priorit
ized-load-shedding-e735e6ce8f7d

7.​ Show the impact and benefits of autoscaling with Kubernetes
a.​ Requires integrating Kubernetes with Blueprint
b.​ Must be done in a 3-person team.

Intermediate Difficulty (Difficulty Bonus > 1.0, <
2.0)

1.​ Integrate Hindsight with Blueprint
a.​ Steps required:

https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANY
wrkQiVIrioNH7MmY/edit?usp=sharing)

b.​ Hindsight Paper: https://www.usenix.org/system/files/nsdi23-zhang-lei.pdf
2.​ Integrate Metafor (metastability analysis library) with Blueprint.

a.​ This will basically require converting the Blueprint workflows into the DSL by
Metafor. Each API maps into Work. Each Service has a Server and a Client
configured.

b.​ Library: https://github.com/mpi-sws-rse/metafor/tree/main
c.​ Paper: https://sigops.org/s/conferences/hotos/2025/papers/hotos25-106.pdf

3.​ Integrate Blueprint with TLA+.
a.​ Possibility #1: Generate Blueprint workflows into TLA+ programs.
b.​ Possibility #2: Generate Blueprint workflows from TLA+ programs (or Modular

PlusCal) to get integration with PGo
i.​ PGo Paper: https://www.cs.ubc.ca/~bestchai/papers/asplos23-pgo.pdf
ii.​ PGo Code: https://github.com/DistCompiler/pgo

4.​ Integrating Blueprint with OpperTune to allow for parameter tuning.
a.​ OpperTune Paper:

https://www.usenix.org/system/files/nsdi24-somashekar.pdf
b.​ OpperTune Code: https://github.com/microsoft/OPPerTune/tree/main

5.​ Integrating Blueprint with MuCache

https://www.usenix.org/system/files/osdi20-qiu.pdf
https://gitlab.engr.illinois.edu/DEPEND/firm/-/tree/master/anomaly-injector
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
https://netflixtechblog.com/keeping-netflix-reliable-using-prioritized-load-shedding-6cc827b02f94
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d
https://netflixtechblog.com/enhancing-netflix-reliability-with-service-level-prioritized-load-shedding-e735e6ce8f7d
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://docs.google.com/document/d/1HO8aKuZvu1w000ZgWmK1mxurANYwrkQiVIrioNH7MmY/edit?usp=sharing
https://www.usenix.org/system/files/nsdi23-zhang-lei.pdf
https://github.com/mpi-sws-rse/metafor/tree/main
https://sigops.org/s/conferences/hotos/2025/papers/hotos25-106.pdf
https://www.cs.ubc.ca/~bestchai/papers/asplos23-pgo.pdf
https://github.com/DistCompiler/pgo
https://www.usenix.org/system/files/nsdi24-somashekar.pdf
https://github.com/microsoft/OPPerTune/tree/main

a.​ MuCache paper:
https://angelhof.github.io/files/papers/mucache-2024-nsdi.pdf

b.​ MuCache code: https://github.com/eniac/mucache

https://angelhof.github.io/files/papers/mucache-2024-nsdi.pdf
https://github.com/eniac/mucache

	Project Ideas
	Beginner Difficulty (Difficulty Bonus = 1.0)
	Intermediate Difficulty (Difficulty Bonus > 1.0, < 2.0)

