RELIABILITY IN MODERN
~ CLOUD SYSTEMS

Summer 20257

LOGISTICS

ASSIGNMENT 2

s Assignment 2 was due last week

** Grades posted next week

ASSIGNMENT 3

s Assignment 3 was released on Monday June 2nd
** Due Date: Wednesday, June 18th 5pm

* Description: Reproducing a retry storm metastability failure

\/

** Not using the luggage sharing application

*» Instead using Hotel Reservation from DeathStarBench benchmark suite

LOCATION CHANGE (NEXT WEEK)

s Next week’s lecture will be in room 105 (not 005)

* 105 is the room directly above our current room

EMERGENT MISBEHAVIORS
DISCUSSION

PAPER #1 SUMMARY

PAPER #1 SUMMARY

s* Study of open-source CSI failures
s ~20% of cloud incidents caused by CSI failures

s» Data-plane failures account for half of all CSI failures

o More complicated the data abstraction, higher the chance of a CSI
failure

* Management-plane failures can impact observability

+* Most CSI failure fixes are in dedicated connector modules

PAPER #2 SUMMARY

PAPER #2 SUMMARY

» Open-source study of metastability failures

» Framework and characterization of different types of
metastability

» These failures lead to outages (4-10hr common)
* >50% caused by retries

« Metastability is directly dependent on workload, trigger, and
current system state

DISCUSSION THEMES

» What are other examples of emergent misbehaviors in systems?
« What is the right strategy for dealing with metastable failures?

« How do you know if a system is vulnerable to a metastable
failure?

** What is the right strategy for preventing metastable failures?

DISCUSSION THEMES

** What are other examples of emergent misbehaviors in systems?

DISCUSSION THEMES

** What are other examples of emergent misbehaviors in systems?

4 h 4 N

DISCUSSION THEMES

** What is the right strategy for dealing with metastable failures?

DISCUSSION THEMES

** What is the right strategy for dealing with metastable failures?

DISCUSSION THEMES

** What is the right strategy for preventing metastable failures?

DISCUSSION THEMES

** What is the right strategy for preventing metastable failures?

DISCUSSION THEMES

** How do you know if a system is vulnerable to a metastable
failure?

DISCUSSION THEMES

** How do you know if a system is vulnerable to a metastable
failure?

DEALING WITH
METASTABILITY

SYSTEM STATES

Stab le Overloading trigger

\ 4

Metastable Sustaining
Failure effect

ANALYZING SYSTEMS FOR METASTABILITY

ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity

I N N

Current Load: 10k reqs/s

. Retry Strategy: None
Trigger Stable Vulnerable Max Capacity: 11k reqs/s

Duration Region Region Trigger type: 3k reqs/s
Trigger Duration: 3s

\ /_/ \ /: Time Step: O

A= 4
System

Load

ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity

I N N

Current Load: 10k reqs/s

. Retry Strategy: None
Trigger Stable Vulnerable Max Capacity: 11k reqs/s

Duration Region Region Trigger type: 3k reqs/s
Trigger Duration: 3s

\ / \ /: Time Step: 1

ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity

I N N

Current Load: 10k reqs/s
Retry Strategy: None

Trlgg.er Stat.>le Vulnefable Max Capacity: 11k regs/s
Duration Region Beglon Trigger type: 3k reqs/s
Trigger Duration: 3s

\ / \ /: Time Step: 2

ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity
O Current Load: 10k reqs/s
. Retry Strategy: None
Trlgg.er Stat.>le Vulnefable Max Capacity: 11k reqs/s
Duration Region Region Trigger type: 3k reqs/s
Trigger Duration: 3s
\ / \ / Time Step: 3

ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity

I N N

Current Load: 10k reqs/s

. Retry Strategy: None
Trigger Stable Vulnerable Max Capacity: 11k reqs/s

Duration Region Region Trigger type: 3k reqs/s
Trigger Duration: 3s

\ /\)/ \ /: Time Step: 4

Load

RETRY STORM

Trigger
Duration

I

Max Capacity

\

Stable
Region

N

\ Metastable

o

Vulnerable
Region

/=

Load

Current Load: 10k reqs/s
Retry Strategy: Try 3 times
Max Capacity: 11k reqs/s
Trigger type: 3k reqs/s
Trigger Duration: 3s

Time Step: 0

RETRY STORM

Trigger
Duration

I

Max Capacity

\

Stable
Region

N

\ Metastable

AN

Vulnerable
Region

@

/=

Load

Current Load: 10k reqs/s
Retry Strategy: Try 3 times
Max Capacity: 11k reqs/s
Trigger type: 3k reqs/s
Trigger Duration: 3s

Time Step: 1

RETRY STORM

Trigger
Duration

I

Max Capacity

\

Stable
Region

N

\ Metastable

AN

Vulnergble
Region

/=

Load

Current Load: 10k reqs/s
Retry Strategy: Try 3 times
Max Capacity: 11k reqs/s
Trigger type: 3k reqs/s
Trigger Duration: 3s

Time Step: 2

RETRY STORM

Trigger
Duration

I

Max Capacity

\

Stable
Region

N

N Metastable @

N

AN

Vulnerable
Region

/=

Load

Current Load: 10k reqs/s
Retry Strategy: Try 3 times
Max Capacity: 11k reqs/s
Trigger type: 3k reqs/s
Trigger Duration: 3s

Time Step: 3

RETRY STORM

Trigger
Duration

I

Max Capacity

\

Stable
Region

N

N Metastable @

N

AN

Vulnerable
Region

/=

Load

Current Load: 10k reqs/s
Retry Strategy: Try 3 times
Max Capacity: 11k reqs/s
Trigger type: 3k reqs/s
Trigger Duration: 3s

Time Step: 4

SYSTEM STATES

Stab le Overloading trigger

\ 4

Metastable Sustaining
Failure effect

CURING METASTABILITY

** Increasing Capacity

s Adding more instances

s Adding more resources

Trigger
Duration

I

AUTOSCALING

Max Capacity

Stable
Region

i

N

N

Metastable @

Vulnerable
Region

AUTOSCALING

Max Capacity
/ O\ Metastable
Trigger . Vulnerable
: Stable Region
Duration g Reglon
\ / \ A

Load

CURING METASTABILITY

** Load Shedding

*** Increasing Capacity

* Adding more instances

s Adding more resources

CIRCUITBREAKERS

** Prevents new requests from entering the system

** Rejects any new load until the downstream “heals”

CIRCUITBREAKERS

Max Capacity
/ \ Metastable
Trigger . Vulnerable
: Stable Region
Duration g Reglon
O
\ / \ A

Load

CIRCUITBREAKING SHARDED SERVICE

CIRCUITBREAKING SHARDED SERVICE

CIRCUITBREAKERS: KEY ISSUE

** Prevents new requests from entering the system
** Rejects any new load until the downstream “heals”

ISSUE: SACRIFICES AVAILABILITY!

)
105_
E —— W/O CircuitBreaker
E === With CircuitBreaker
::_‘104"
[
c
9 A
m].D 7
—
E _
> 109 . : 1 .
<7 0 20 40 60 80 100
Time (s)

LOAD-SHEDDING WHILE

PRESERVING AVAILABILITY

LOAD-SHEDDING WHILE

PRESERVING AVAILABILITY

Key Idea: Remove non-essential functionality while preserving the main
features of the application

Eg: Remove nice-to-have Ul elements and focus on the important requests!

LOAD-SHEDDING WHILE

PRESERVING AVAILABILITY

Key Idea: Remove non-essential functionality while preserving the main
features of the application

Eg: Remove nice-to-have Ul elements and focus on the important requests!

REQUEST-BASED LOAD SHEDDING

s* Drop/Accept request based on some intrinsic characteristic of
the request

s Eg: Rate-limiting based on the IP address or user-id

PRIORITIZED LOAD SHEDDING

* For every generated request, attach a priority level

** At the entrypoint, filter out any request that has a priority level
lower than the current acceptable request level

** Ensures that the high priority requests are still being serviced
whereas low priority requests get dropped so that they don’t
disrupt the system

SERVICE LEVEL LOAD SHEDDING

»» Different services may have different priorities!

** Instead of load-shedding with a one-for-all policy, allow each
service to define their own policy for load shedding

¢ CRITICAL: Affect core functionality — These will never be shed if we are

not in complete failure.

 DEGRADED: Affect user experience — These will be progressively shed as

the load increases.

¢ BEST_EFFORT: Do not affect the user — These will be responded to in a

best effort fashion and may be shed progressively in normal operation.

e BULK: Background work, expect these to be routinely shed.

EXAMPLE: NETFLIX PLAY API

e CRITICAL: Affect core functionality — These will never be shed if we are

not in complete failure.

 DEGRADED: Affect user experience — These will be progressively shed as

the load increases.

e BEST_EFFORT: Do not affect the user — These will be responded to in a

best effort fashion and may be shed progressively in normal operation.

e BULK: Background work, expect these to be routinely shed.

EXAMPLE: NETFLIX PLAY API

K BEST_EFFORT
100 ’- P & 036

75
50

25

0 L2 R TETE T SRR TR TR S e e e |

|) I 1 - | |
50 60 70 80 90 100

Percentage of requests (Y-axis) being load-shed based on CPU utilization (X-axis) for different priority buckets

DISCUSSION THEMES

** How to analyze systems for metastability without actually
executing the system?

	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: ASSIGNMENT 2
	Slide 4: ASSIGNMENT 3
	Slide 5: LOCATION CHANGE (NEXT WEEK)
	Slide 6: Emergent misbehaviors DISCUSSION
	Slide 7: Paper #1 Summary
	Slide 8: Paper #1 Summary
	Slide 9: Paper #2 Summary
	Slide 10: Paper #2 Summary
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: DISCUSSION THEMES
	Slide 16: DISCUSSION THEMES
	Slide 17: DISCUSSION THEMES
	Slide 18: DISCUSSION THEMES
	Slide 19: DISCUSSION THEMES
	Slide 20: Dealing with metastability
	Slide 21: System states
	Slide 22: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 23: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 24: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 25: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 26: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 27: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 28: Retry storm
	Slide 29: Retry storm
	Slide 30: Retry storm
	Slide 31: Retry storm
	Slide 32: Retry storm
	Slide 33: System states
	Slide 34: CURING METASTABILITY
	Slide 35: AUTOSCALING
	Slide 36: AUTOSCALING
	Slide 37: CURING METASTABILITY
	Slide 38: CIRCUITBREAKERS
	Slide 39: CIRCUITBREAKERS
	Slide 40: CIRCUITBREAKING SHARDED SERVICE
	Slide 41: CIRCUITBREAKING SHARDED SERVICE
	Slide 42: CIRCUITBREAKERS: KEY ISSUE
	Slide 43: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 44: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 45: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 46: Request-based LOAD SHEDDING
	Slide 47: Prioritized load shedding
	Slide 48: SERVICE LEVEL LOAD SHEDDING
	Slide 49: Example: Netflix play api
	Slide 50: Example: Netflix play api
	Slide 51: DISCUSSION THEMES

