
RELIABILITY IN MODERN 
CLOUD SYSTEMS

Summer 2025



LOGISTICS



ASSIGNMENT 2

❖ Assignment 2 was due last week

❖ Grades posted next week



ASSIGNMENT 3

❖ Assignment 3 was released on Monday June 2nd

❖ Due Date: Wednesday, June 18th 5pm

❖ Description: Reproducing a retry storm metastability failure

❖ Not using the luggage sharing application

❖ Instead using Hotel Reservation from DeathStarBench benchmark suite



LOCATION CHANGE (NEXT WEEK)

❖ Next week’s lecture will be in room 105 (not 005)

❖ 105 is the room directly above our current room



EMERGENT MISBEHAVIORS 
DISCUSSION



PAPER #1 SUMMARY



PAPER #1 SUMMARY

❖ Study of open-source CSI failures

❖ ~20% of cloud incidents caused by CSI failures

❖ Data-plane failures account for half of all CSI failures

o More complicated the data abstraction, higher the chance of a CSI 

failure

❖ Management-plane failures can impact observability

❖ Most CSI failure fixes are in dedicated connector modules



PAPER #2 SUMMARY



PAPER #2 SUMMARY

❖ Open-source study of metastability failures

❖ Framework and characterization of different types of 

metastability

❖ These failures lead to outages (4-10hr common)

❖ >50% caused by retries

❖ Metastability is directly dependent on workload, trigger, and 

current system state



DISCUSSION THEMES

❖ What are other examples of emergent misbehaviors in systems?

❖ What is the right strategy for dealing with metastable failures?

❖ How do you know if a system is vulnerable to a metastable 

failure?

❖ What is the right strategy for preventing metastable failures?



DISCUSSION THEMES

❖ What are other examples of emergent misbehaviors in systems?



DISCUSSION THEMES

❖ What are other examples of emergent misbehaviors in systems?

Laser of Death

❖ Load Balancer acts like a laser of death

❖ If 1 replica fails due to overload, 

balancer moves work to healthy replicas

❖ If failure detected due to health checks 

then it’s a “killer health check”

❖ Healthy replicas now get overworked

❖ Replicas eventually fail!

Cross-System Inconsistency

❖ Write some value to a replicated 

database

❖ Reading that value returns the stale 

value instead of the newly written value

❖ Caused due to new writes getting to the 

replicas before the read request

❖ Common in geo-distributed datastores



DISCUSSION THEMES

❖ What is the right strategy for dealing with metastable failures?



DISCUSSION THEMES

❖ What is the right strategy for dealing with metastable failures?

There are 2 strategies: increasing capacity or load-shedding (decreasing the load). 

Increasing capacity is limited but load-shedding hurts availability! Need both ☺



DISCUSSION THEMES

❖ What is the right strategy for preventing metastable failures?



DISCUSSION THEMES

❖ What is the right strategy for preventing metastable failures?

Choosing a design that limits the artificial workload the system can generate, 

preventive load shedding strategies, aggressive capacity increasing strategies



DISCUSSION THEMES

❖ How do you know if a system is vulnerable to a metastable 

failure?



DISCUSSION THEMES

❖ How do you know if a system is vulnerable to a metastable 

failure?

Requires a lot of manual analysis currently. This is an open problem that researchers 

are working on right now.



DEALING WITH 
METASTABILITY



SYSTEM STATES

Stable

Vulnerable

Metastable

Failure

Overloading trigger

Sustaining 

effect

Metastability Failures in the Wild, OSDI’22, Huang et al [OSDI 2022 presentation]



ANALYZING SYSTEMS FOR METASTABILITY



Stable 

Region

ANALYZING SYSTEMS FOR METASTABILITY

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: None

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

System

Vulnerable 

Region

Time Step: 0



Stable 

Region

ANALYZING SYSTEMS FOR METASTABILITY

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: None

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 1



Stable 

Region

ANALYZING SYSTEMS FOR METASTABILITY

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: None

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 2



Stable 

Region

ANALYZING SYSTEMS FOR METASTABILITY

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: None

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 3



Stable 

Region

ANALYZING SYSTEMS FOR METASTABILITY

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: None

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 4



Stable 

Region

RETRY STORM

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: Try 3 times

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 0

Metastable



Stable 

Region

RETRY STORM

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: Try 3 times

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 1

Metastable



Stable 

Region

RETRY STORM

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: Try 3 times

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 2

Metastable



Stable 

Region

RETRY STORM

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: Try 3 times

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 3

Metastable



Stable 

Region

RETRY STORM

Load

Trigger

Duration

Current Load: 10k reqs/s

Retry Strategy: Try 3 times

Max Capacity: 11k reqs/s

Trigger type: 3k reqs/s

Trigger Duration: 3s

Max Capacity

Vulnerable 

Region

Time Step: 4

Metastable



SYSTEM STATES

Stable

Vulnerable

Metastable

Failure

Overloading trigger

Sustaining 

effect

Metastability Failures in the Wild, OSDI’22, Huang et al [OSDI 2022 presentation]



CURING METASTABILITY

❖ Increasing Capacity

❖ Adding more instances

❖ Adding more resources



Stable 

Region

AUTOSCALING

Load

Trigger

Duration

Max Capacity

Vulnerable 

Region

Metastable



Stable Region

AUTOSCALING

Load

Trigger

Duration

Max Capacity

Vulnerable 

Region

Metastable



CURING METASTABILITY

❖ Load Shedding

❖ Increasing Capacity

❖ Adding more instances

❖ Adding more resources



CIRCUITBREAKERS

❖ Prevents new requests from entering the system

❖ Rejects any new load until the downstream “heals”



Stable Region

CIRCUITBREAKERS

Load

Trigger

Duration

Max Capacity

Vulnerable 

Region

Metastable



CIRCUITBREAKING SHARDED SERVICE

A

Shard 1 Shard 2 Shard 3 Shard 4



CIRCUITBREAKING SHARDED SERVICE

A, 
10% 

CB

Shard 1 Shard 2 Shard 3 Shard 4



CIRCUITBREAKERS: KEY ISSUE

❖ Prevents new requests from entering the system

❖ Rejects any new load until the downstream “heals”

ISSUE: SACRIFICES AVAILABILITY!



LOAD-SHEDDING WHILE 
PRESERVING AVAILABILITY



LOAD-SHEDDING WHILE 
PRESERVING AVAILABILITY

Key Idea: Remove non-essential functionality while preserving the main 

features of the application

Eg: Remove nice-to-have UI elements and focus on the important requests!



LOAD-SHEDDING WHILE 
PRESERVING AVAILABILITY

Key Idea: Remove non-essential functionality while preserving the main 

features of the application

Eg: Remove nice-to-have UI elements and focus on the important requests!



REQUEST-BASED LOAD SHEDDING

❖ Drop/Accept request based on some intrinsic characteristic of 

the request

❖ Eg: Rate-limiting based on the IP address or user-id



PRIORITIZED LOAD SHEDDING

❖ For every generated request, attach a priority level

❖ At the entrypoint, filter out any request that has a priority level 

lower than the current acceptable request level

❖ Ensures that the high priority requests are still being serviced 

whereas low priority requests get dropped so that they don’t 

disrupt the system

Keeping Netflix Reliable Using Prioritized Load Shedding, Netflix Tech Blog Nov 2020, Correa et al



SERVICE LEVEL LOAD SHEDDING

❖ Different services may have different priorities!

❖ Instead of load-shedding with a one-for-all policy, allow each 

service to define their own policy for load shedding

Enhancing Netlfix Reliability with Service level prioritized load shedding, Netflix Tech Blog Jun 2024, Mendiratta et al



EXAMPLE: NETFLIX PLAY API

Enhancing Netlfix Reliability with Service level prioritized load shedding, Netflix Tech Blog Jun 2024, Mendiratta et al



EXAMPLE: NETFLIX PLAY API

Enhancing Netlfix Reliability with Service level prioritized load shedding, Netflix Tech Blog Jun 2024, Mendiratta et al



DISCUSSION THEMES

❖ How to analyze systems for metastability without actually 

executing the system?


	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: ASSIGNMENT 2
	Slide 4: ASSIGNMENT 3
	Slide 5: LOCATION CHANGE (NEXT WEEK)
	Slide 6: Emergent misbehaviors DISCUSSION
	Slide 7: Paper #1 Summary
	Slide 8: Paper #1 Summary
	Slide 9: Paper #2 Summary
	Slide 10: Paper #2 Summary
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: DISCUSSION THEMES
	Slide 16: DISCUSSION THEMES
	Slide 17: DISCUSSION THEMES
	Slide 18: DISCUSSION THEMES
	Slide 19: DISCUSSION THEMES
	Slide 20: Dealing with metastability
	Slide 21: System states
	Slide 22: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 23: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 24: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 25: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 26: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 27: ANALYZING SYSTEMS FOR METASTABILITY
	Slide 28: Retry storm
	Slide 29: Retry storm
	Slide 30: Retry storm
	Slide 31: Retry storm
	Slide 32: Retry storm
	Slide 33: System states
	Slide 34: CURING METASTABILITY
	Slide 35: AUTOSCALING
	Slide 36: AUTOSCALING
	Slide 37: CURING METASTABILITY
	Slide 38: CIRCUITBREAKERS
	Slide 39: CIRCUITBREAKERS
	Slide 40: CIRCUITBREAKING SHARDED SERVICE
	Slide 41: CIRCUITBREAKING SHARDED SERVICE
	Slide 42: CIRCUITBREAKERS: KEY ISSUE
	Slide 43: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 44: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 45: LOAD-SHEDDING WHILE PRESERVING AVAILABILITY
	Slide 46: Request-based LOAD SHEDDING
	Slide 47: Prioritized load shedding
	Slide 48: SERVICE LEVEL LOAD SHEDDING
	Slide 49: Example: Netflix play api
	Slide 50: Example: Netflix play api
	Slide 51: DISCUSSION THEMES

