RELIABILITY IN MODERN
~ CLOUD SYSTEMS

Summer 20257




LOGISTICS




ASSIGNMENT 2

s Assignment 2 was due last week

** Grades posted next week




ASSIGNMENT 3

s Assignment 3 was released on Monday June 2nd
** Due Date: Wednesday, June 18th 5pm

* Description: Reproducing a retry storm metastability failure

\/

** Not using the luggage sharing application

*» Instead using Hotel Reservation from DeathStarBench benchmark suite




LOCATION CHANGE (NEXT WEEK)

s Next week’s lecture will be in room 105 (not 005)

* 105 is the room directly above our current room




EMERGENT MISBEHAVIORS
DISCUSSION




PAPER #1 SUMMARY




PAPER #1 SUMMARY

s* Study of open-source CSI failures
s ~20% of cloud incidents caused by CSI failures

s» Data-plane failures account for half of all CSI failures

o More complicated the data abstraction, higher the chance of a CSI
failure

* Management-plane failures can impact observability

+* Most CSI failure fixes are in dedicated connector modules



PAPER #2 SUMMARY




PAPER #2 SUMMARY

» Open-source study of metastability failures

» Framework and characterization of different types of
metastability

» These failures lead to outages (4-10hr common)
* >50% caused by retries

« Metastability is directly dependent on workload, trigger, and
current system state



DISCUSSION THEMES

» What are other examples of emergent misbehaviors in systems?
« What is the right strategy for dealing with metastable failures?

« How do you know if a system is vulnerable to a metastable
failure?

** What is the right strategy for preventing metastable failures?
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** How do you know if a system is vulnerable to a metastable
failure?




DEALING WITH
METASTABILITY



SYSTEM STATES

Stab le Overloading trigger
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Metastable Sustaining
Failure effect



ANALYZING SYSTEMS FOR METASTABILITY
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ANALYZING SYSTEMS FOR METASTABILITY

Max Capacity

I N N

Current Load: 10k reqs/s

. Retry Strategy: None
Trigger Stable Vulnerable Max Capacity: 11k reqs/s

Duration Region Region Trigger type: 3k reqs/s
Trigger Duration: 3s

\ /\)/ \ /: Time Step: 4

Load




RETRY STORM
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CURING METASTABILITY

** Increasing Capacity

s Adding more instances

s Adding more resources
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CURING METASTABILITY

** Load Shedding

*** Increasing Capacity

* Adding more instances

s Adding more resources




CIRCUITBREAKERS

** Prevents new requests from entering the system

** Rejects any new load until the downstream “heals”
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CIRCUITBREAKING SHARDED SERVICE
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CIRCUITBREAKERS: KEY ISSUE

** Prevents new requests from entering the system
** Rejects any new load until the downstream “heals”

ISSUE: SACRIFICES AVAILABILITY!
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LOAD-SHEDDING WHILE

PRESERVING AVAILABILITY
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PRESERVING AVAILABILITY

Key Idea: Remove non-essential functionality while preserving the main
features of the application

Eg: Remove nice-to-have Ul elements and focus on the important requests!
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REQUEST-BASED LOAD SHEDDING

s* Drop/Accept request based on some intrinsic characteristic of
the request

s Eg: Rate-limiting based on the IP address or user-id




PRIORITIZED LOAD SHEDDING

* For every generated request, attach a priority level

** At the entrypoint, filter out any request that has a priority level
lower than the current acceptable request level

** Ensures that the high priority requests are still being serviced
whereas low priority requests get dropped so that they don’t
disrupt the system




SERVICE LEVEL LOAD SHEDDING

»» Different services may have different priorities!

** Instead of load-shedding with a one-for-all policy, allow each
service to define their own policy for load shedding

¢ CRITICAL: Affect core functionality — These will never be shed if we are

not in complete failure.

 DEGRADED: Affect user experience — These will be progressively shed as

the load increases.

¢ BEST_EFFORT: Do not affect the user — These will be responded to in a

best effort fashion and may be shed progressively in normal operation.

e BULK: Background work, expect these to be routinely shed.



EXAMPLE: NETFLIX PLAY API
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not in complete failure.

 DEGRADED: Affect user experience — These will be progressively shed as

the load increases.

e BEST_EFFORT: Do not affect the user — These will be responded to in a

best effort fashion and may be shed progressively in normal operation.

e BULK: Background work, expect these to be routinely shed.



EXAMPLE: NETFLIX PLAY API
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DISCUSSION THEMES

** How to analyze systems for metastability without actually
executing the system?
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