RELIABILITY IN MODERN
~ CLOUD SYSTEMS

Summer 20257

LOGISTICS

ASSIGNMENT 1

s Assignment 1 grades posted

\/

** assnl_grades branch in the private forks

ASSIGNMENT 2

s Assignment 2 has now been released
** Due Date: May 28t", 5:00 pm CEST

*» Description
s Writing and executing a workload

N/
*

** Using distributed tracing to monitor and analyze the system

*» Calculating latency percentiles

OBSERVABILITY
DISCUSSION

PAPER SUMMARY

PAPER SUMMARY

s* Dapper is (maybe was) the distributed tracing system deployed at
Google in production

» First known deployment of distributed tracing in industry
» Tracing Overhead is around ~200ns for span creation
** Annotations provide more context to traces

s Sampling is important
¢ First known use of sampling ©
s Adaptive sampling to capture a fixed rate of traces per unit time

DISCUSSION THEMES

» If you had a finite operational budget for observability, how would
you distribute it among metrics, logs, or traces?

** What is the correct sampling rate for an application? Should this
rate be fixed?

 What is the biggest problem with using raw logs?

** Where should you add tracing/instrumentation points in your
system?

DISCUSSION THEMES

** What is the biggest problem with using raw logs?

DISCUSSION THEMES

** What is the biggest problem with using raw logs?

DISCUSSION THEMES

* If you had a finite operational budget for observability, how would
you distribute it among metrics, logs, or traces?

DISCUSSION THEMES

* If you had a finite operational budget for observability, how would
you distribute it among metrics, logs, or traces?

DISCUSSION THEMES

** What is the correct sampling rate for an application? Should this
rate be fixed?

DISCUSSION THEMES

** What is the correct sampling rate for an application? Should this
rate be fixed?

DISCUSSION THEMES

** Where should you add tracing/instrumentation points in your
system?

DISCUSSION THEMES

** Where should you add tracing/instrumentation points in your
system?

ERRORS, FAILURES,
INCIDENTS, OUTAGES

THE ERROR FAMILY HIERARCHY

/ Errors \
/ Failures \
/Incidents A
4 ™
Outages
€ cg’“}

NI =/

ERRORS

An error is simply a deviation from successful behavior

TYPES OF ERRORS (EXPECTATION)

Unexpected Errors Expected Errors
¢ Could be due to bugs in the *» Handle incorrect arguments
system < Eg: User with a specific
< Eg: Divide by a zero error or null username doesn't exist
pointer exception +* Handle situations where
¢ Could be due to environmental there is no data
conditions s Eg: Generating an error when

there are no reviews for a

» Eg: Timeout, connectivity specific item

TYPES OF ERRORS (PROPAGATION)

Non-Fatal Errors Fatal Errors

s Errors that are internal and s Errors that propagate back
do not propagate back to to the end-user
the end-user % These errors cause the

** These errors do not cause request to fail

the request to fail

NON-FATAL ERRORS

1 func GetUserInfo(user User) (Info, error) {
2 info, err := CheckInAmericasDB(user)
3 if err == nil {

4 return info, nil

3 h

6 info, err = CheckInEuropeDB{(user)

7 if err == nil {

8 return info, nil

9 h

10 info, err = CheckInAsiaPacDB({user)
11 if err == nil {

12 return info, nil

13 1

14 return nil, NOT_FOUND

5}

Fig.2 Listing (1), The Tale of Errors in Microservices, Dec. 2024 by Lee et al

s Failure is an observable problem in the system

** Manifestation of an error that causes systems to behave in an
unintended fashion

» Failures could be caused by a single error or a combination of multiple
errors

** Not necessary that failure has to be caused by a fatal error!

TYPES OF FAILURES

Transient Failures Systemic Failures
s Temporary s Persistent
* Short-lived ** Remain until fixed
** Do not require any fixes ** Requires patching or bug
** Not caused due to a design fixes
flaw in the system s Caused due to logic bugs or

design flaws

FAIL-STOP FAILURES

** Full crash of a component

s* Potentially impacts the
availability of the system

** Worst case scenario for a
component as this requires
full recovery

FAIL-SLOW FAILURES

s System is still functioning but
with lower than expected
system performance

** Leads to “limplock”
situations where the rate of
progress in a system is very
slow

One-Size-Fits-None: Understanding and Enhancing Slow-Fault Tolerance in Modern Distributed Systems, Apr’ 25, Liu et al

CROSS-SYSTEM INTERACTION

FAILURES

*» Failures caused due to interaction
between multiple systems u

** Typical cause is due to upstream v
and downstream services @
interpreting things differently o ﬁ

** Root cause is not limited to any
one system

s System gets in a persistent
“metastable” state where there is
NO more progress

s Caused due to a trigger that either
artificially increases the load or
reduces the processing capacity

Sustaining

Effect

GRAY FAILURES

+» Partial failure that does not
cause a full outage

s “A component appears to be
working but is broken”

GRAY FAILURES

s+ Partial failure that does not
observation

cause a full outage
A Lo e
l

s “A component appears to be difference, -~ l

working but is broken” ,x";e,;m i
Syoiarm o
: probe A
»» Differential Observability: Not @ Sretem

detected by all components
causing different components
to behave differently

INCIDENTS

Incidents are unplanned interruptions in a service or a perceived
reduction in the quality of the service

INCIDENTS

Incidents are unplanned interruptions in a service or a perceived
reduction in the quality of the service

Troubleshooting stages:

s* Detection: How was an incident detected? If not, then why was
not an incident detected?

** Root Cause Analysis: What was the root cause of the incident?

s Mitigation: How to resolve this incident? Can this be automated?

INCIDENTS - KEY NUMBERS

TTD: Time to Detect: Total time taken to detect an incident from
when the incident happened

TTM: Time to Mitigate: Total time taken to mitigate the incident from
the time it was detected

Common target is to resolve incidents within a specific time window

OUTAGES

** The most severe incidents can lead to an outage

s Outage is a complete loss in availability of the system

** This is the worst-case scenario for an application

\/

s Outages impact customers/users directly

\/

+* Cause significant monetary loss

DISCUSSION THEMES

** What type of errors cause outages?

** What types of incidents do not lead to outages?

s* Can you detect failures with 100% accuracy?

	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: ASSIGNMENT 1
	Slide 4: ASSIGNMENT 2
	Slide 5: OBSERVABILITY DISCUSSION
	Slide 6: PAPER SUMMARY
	Slide 7: PAPER SUMMARY
	Slide 8: DISCUSSION THEMES
	Slide 9: DISCUSSION THEMES
	Slide 10: DISCUSSION THEMES
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: DISCUSSION THEMES
	Slide 16: DISCUSSION THEMES
	Slide 17: Errors, FAILURES, INCIDENTS, outages
	Slide 18: The error family hierarchy
	Slide 19: Errors
	Slide 20: Types of errors (Expectation)
	Slide 21: Types of errors (PROPAGATION)
	Slide 22: NON-FATAL ERRORS
	Slide 23: Failures
	Slide 24: TYPES OF FAILURES
	Slide 25: FAIL-STOP FAILURES
	Slide 26: FAIL-SLOW FAILURES
	Slide 27: CROSS-SYSTEM INTERACTION FAILURES
	Slide 28: METASTABILITY FAILURES
	Slide 29: GRaY FAILURES
	Slide 30: GRaY FAILURES
	Slide 31: incidents
	Slide 32: incidents
	Slide 33: Incidents – key numbers
	Slide 34: OUTAGES
	Slide 35: DISCUSSION THEMES

