
RELIABILITY IN MODERN
CLOUD SYSTEMS

Summer 2025

LOGISTICS

ASSIGNMENT 1

❖ Assignment 1 has been released

❖ Due: Saturday 10th May, 2025 5pm CEST.

❖ Each student registered on CMS has their own private fork of the

assignments repo.

❖ If you do not have access to your repo then contact the course staff

immediately after class.

❖ We will only grade the officially created forks of the main assignments

repo.

❖ Remember to pull test fixes from the main repository.

TAIL AT SCALE
DISCUSSION

PAPER SUMMARY

PAPER SUMMARY

Cloud Computing landscape has changed

❖ Datacentres are heterogeneous due to ending of Moore’s Law

❖ New workloads/applications have fundamentally different

performance requirements

PAPER SUMMARY

Cloud Computing landscape has changed

❖ Datacentres are heterogeneous due to ending of Moore’s Law

❖ New workloads/applications have fundamentally different

performance requirements

Guaranteeing tail latency in current landscape is hard

❖ Different hardwares have different performance profiles

❖ Increase in latency variability!

DISCUSSION THEMES

❖ What software techniques do we need to handle performance

variability?

❖ Why can we not eliminate all performance variability?

❖ What is the impact of new workloads and hardware on

reliability?

DISCUSSION THEMES

❖ Why can we not eliminate all performance variability?

DISCUSSION THEMES

❖ Why can we not eliminate all performance variability?

Systems will get more complex

Complex systems have more variability

DISCUSSION THEMES

❖ What is the impact of new workloads and hardware on

reliability?

DISCUSSION THEMES

❖ What is the impact of new workloads and hardware on

reliability?

Harder to provide reliability guarantees

DISCUSSION THEMES

❖ What software techniques do we need to handle performance

variability?

DISCUSSION THEMES

❖ What software techniques do we need to handle performance

variability?

Techniques that reduce the tail latency! Eg: request hedging

RELIABILITY BASICS

THE TAIL AT SCALE

Reliability of cloud systems at scale is largely

dependent on the tail performance of the system

at scale

Software techniques that tolerate performance

variability are vital to building responsive cloud systems

at scale

THE TAIL AT SCALE

Reliability of cloud systems at scale is largely

dependent on the tail performance of the system

at scale

Software techniques that tolerate performance

variability are vital to building responsive cloud systems

at scale

WHAT IS RELIABILITY?

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

HOW TO SPECIFY RELIABILITY?

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

SERVICE LEVEL OBJECTIVES

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

Specify reliability of a system using service level objectives!

❖ Service Level Objectives are measurable targets that define the

expected level of a service’s reliability behaviour

MEASURING SLO

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

Specify reliability of a system using service level objectives!

❖ Service Level Objectives are measurable targets that define the

expected level of a service’s reliability behaviour

SLOs are measured using a Service Level Indicator (SLI)

MEASURING SLO

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

Specify reliability of a system using service level objectives!

❖ Service Level Objectives are measurable targets that define the

expected level of a service’s reliability behaviour

SLOs are measured using a Service Level Indicator (SLI)

MEASURING SLO

Reliability is the ability of cloud services to consistently perform as

expected with minimal disruption

Specify reliability of a system using service level objectives!

❖ Service Level Objectives are measurable targets that define the

expected level of a service’s reliability behaviour

SLOs are measured using a Service Level Indicator (SLI)

The measurement is usually an aggregation of a distribution OR a

percentage of a total

RESPONSIVENESS

Service Level Indicator:

RESPONSIVENESS

Service Level Indicator: Request Latency (99th percentile)

RESPONSIVENESS

Service Level Indicator: Request Latency (99th percentile)

Service Level Objective:

RESPONSIVENESS

Service Level Indicator: Request Latency (99th percentile)

Service Level Objective:

RESPONSIVENESS

Service Level Indicator: Request Latency (99th percentile)

Service Level Objective:

99% of requests must have latency is lower than 1 second

AVAILABILITY - UPTIME

Service Level Indicator:

AVAILABILITY - UPTIME

Service Level Indicator: Uptime (How long has the service been

running?)

AVAILABILITY - UPTIME

Service Level Indicator: Uptime (How long has the service been

running?)

Service Level Objective:

AVAILABILITY - UPTIME

Service Level Indicator: Uptime (How long has the service been

running?)

Service Level Objective:

AVAILABILITY - GOODPUT

Service Level Indicator: Goodput (# successful reqs / # total reqs)

AVAILABILITY - GOODPUT

Service Level Indicator: Goodput (# successful reqs / # total reqs)

Service Level Objective:

AVAILABILITY - GOODPUT

Service Level Indicator: Goodput (# successful reqs / # total reqs)

Service Level Objective:

95% of all requests should succeed

RESOURCE COST

Service Level Indicator: Resource Utilization

RESOURCE COST

Service Level Indicator: Resource Utilization

Service Level Objective:

At least 75% of the allocated resource must not be idle

RESILIENCE

Service Level Indicator:

RESILIENCE - FAILURES

Service Level Indicator:

❖ MTBF: Mean Time Between Failures

❖ Goal is to maximize the MTBF

❖ Avg. # of incidents in a given time window

❖ Goal is to minimize the number of incidents in the time window

RESILIENCE - RECOVERY

Service Level Indicator:

❖ MTTR: Mean Time to Recovery

❖ Goal is to minimize the MTTR

RESILIENCE

Failures SLIs:

❖ MTBF: Mean Time Between Failures

❖ Goal is to maximize the MTBF

❖ Avg. # of incidents in a given time window

❖ Goal is to minimize the number of incidents in the time window

Recovery SLIs:

❖ MTTR: Mean Time to Recovery

❖ Goal is to minimize the MTTR

DURABILITY

Primarily defined for stateful services like databases, caches

STATELESS VS STATEFUL

Stateless

❖ Does not track app state

❖ Operations are idempotent

❖Maintains very little to no

“state”

Stateful

❖ Tracks app state

❖ All Operations are not

idempotent

❖Maintains all the state!

DURABILITY

Primarily defined for stateful services like databases, caches

Service Level Indicator: % of written that is readable

Service Level Objective: Ideally, 100% of the written data is readable

CORRECTNESS & QUALITY

CORRECTNESS & QUALITY

Definition of quality is application specific

❖ Example SLO: At least 10% of the ads shown in Google Search

results must result in an ad click

CORRECTNESS & QUALITY

Definition of quality is application specific

❖ Example SLO: At least 10% of the ads shown in Google Search

results must result in an ad click

Correctness is measured using tests prior to deployment

During execution, you can track correctness violations

❖ Example SLO: Less than 5% read requests must violate causal

consistency

THE TAIL AT SCALE

Reliability of cloud systems at scale is largely

dependent on the tail performance of the system

at scale

Software techniques that tolerate performance

variability are vital to building responsive cloud systems

at scale

THE TAIL AT SCALE

Reliability of cloud systems at scale is largely

dependent on the tail performance of the system

at scale

Software techniques that tolerate performance

variability are vital to building responsive cloud systems

at scale

VERTICAL SCALING

❖ Provide more computation

resources to the service

VERTICAL SCALING

❖ Provide more computation

resources to the service

❖ Assign more CPUs to the

container executing the

service

❖ Migrate the service to a more

powerful machine

VERTICAL SCALING

❖ Provide more computation

resources to the service

❖ Assign more CPUs to the

container executing the

service

❖ Migrate the service to a more

powerful machine

If all fails, then just download

more RAM!

VERTICAL SCALING

Provide more computation

resources to the service

Reliability Analysis

❖ Limited improvement to

throughput + goodput

❖ Marginal difference in

latency

❖ No improvement in uptime!

DATA SHARDING

DATA SHARDING

Only applicable to stateful services

How to have data sharding?

DATA SHARDING

Only applicable to stateful services

How to have data sharding?

+ Better throughput

+ Slightly better latency

+ Lower utilization

+ No single pt of failure

+ No redundancy

REPLICATION (HORIZONTAL SCALING)

REPLICATION (HORIZONTAL SCALING)

Stateless Services

❖ Add more instances of the service

❖ Put a load balancer in front to direct the requests

❖ Improves throughput

❖ Worsens latency (we now have an extra hop)

REPLICATION (HORIZONTAL SCALING)

Stateless Services

❖ Add more instances of the service

❖ Put a load balancer in front to direct the requests

❖ Improves throughput

❖ Worsens latency (we now have an extra hop)

Stateful Services

❖ Improves read throughput; Worsens write throughput

MULTI-TENANCY

Problem: We have limited capacity, need to maximize the efficiency

of the hardware resources (specifically compute)

MULTI-TENANCY

Problem: We have limited capacity, need to maximize the efficiency

of the hardware resources (specifically compute)

Solution:

❖ Co-locate services so that we pack as many services on a

machine as possible

❖ Improves resource efficiency and utilization

❖ Horrible for individual service tput + latency

REQUEST HEDGING

Problem: Lot of variability in latency, latency distribution has long

tails in worst case scenarios

Solution:

❖ Send the same request to multiple (say 2) replicas

❖ Use the result from the faster replica

❖ Do n-times the amount of work to improve latency

TIMEOUTS

Problem: Have to wait a long time to get any response from an

overloaded server

TIMEOUTS

Problem: Have to wait a long time to get any response from an

overloaded server

Solution:

❖ Make the request and wait for a specified time period (eg: 1s)

❖ If response doesn’t come in wait period then abort the execution

RETRIES

Problem: Did not receive a timely or successful response from the

server

RETRIES

Problem: Did not receive a timely or successful response from the

server

Solution

❖ If request fails or times out, try again

❖ …but try again smartly so that we don’t overload the system

more

RETRIES

Problem: Did not receive a timely or successful response from the

server

Solution

❖ If request fails or times out, try again

❖ …but try again smartly so that we don’t overload the system

more

CANCELLATIONS

Problem: Initial request may have timed out but downstream

services still keep doing the work

CANCELLATIONS

Problem: Initial request may have timed out but downstream

services still keep doing the work

Solution:

❖ If a request is timed-out or cancelled higher up in the call chain,

propagate the cancellation to all downstream services

❖ Saves wasted work

❖ Cancellation propagation takes extra calls

DEADLINES

Problem: Cancellation propagation does not prevent the problem of

wasted effort

DEADLINES

Problem: Cancellation propagation does not prevent the problem of

wasted effort

Solution:

❖ For each request, set a deadline that it must finish by

❖ Propagate deadline with request to each server

❖ Cancel requests whenever deadline is set

CANARY REQUESTS

Problem: New never-seen-before incoming requests could cause

issues with the downstream services

CANARY REQUESTS

Problem: New never-seen-before incoming requests could cause

issues with the downstream services

Solution:

❖ Send the request to a subset of servers

❖ Wait for successful response from the subset

❖ Abort if not reached the minimum threshold of servers

CANARY RELEASES

Problem: New releases might be buggy; can bring the system down

CANARY RELEASES

Problem: New releases might be buggy; can bring the system down

Solution:

Roll-out new releases slowly

Instead of updating all instances of a service at once, update

incrementally

May have stale instances and new instances operating together

DISCUSSION THEMES

❖ When to retry and how to retry?

❖ How should a load balancer balance requests across the replica

group?

❖ Cancellations and Deadlines try to reduce wasted work. Which

technique should a system employ?

❖ Are retries good?

	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: ASSIGNMENT 1
	Slide 4: TAIL AT SCALE DISCUSSION
	Slide 5: Paper summary
	Slide 6: Paper summary
	Slide 7: Paper summary
	Slide 8: DISCUSSION THEMES
	Slide 9: DISCUSSION THEMES
	Slide 10: DISCUSSION THEMES
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: RELIability basics
	Slide 16: THE TAIL AT SCALE
	Slide 17: THE TAIL AT SCALE
	Slide 18: What is reliability?
	Slide 19: HOW TO SPECIFY RELIABILITY?
	Slide 20: Service level objectives
	Slide 21: Measuring slo
	Slide 22: Measuring slo
	Slide 23: Measuring slo
	Slide 24: RESPONSIVENESS
	Slide 25: RESPONSIVENESS
	Slide 26: RESPONSIVENESS
	Slide 27: RESPONSIVENESS
	Slide 28: RESPONSIVENESS
	Slide 29: Availability - UPTIME
	Slide 30: Availability - uptime
	Slide 31: Availability - UPTIME
	Slide 32: Availability - UPTIME
	Slide 33: Availability - goodput
	Slide 34: Availability - goodput
	Slide 35: Availability - goodput
	Slide 36: RESOURCE COST
	Slide 37: RESOURCE COST
	Slide 38: RESILIENCE
	Slide 39: RESILIENCE - Failures
	Slide 40: RESILIENCE - RECOVERY
	Slide 41: RESILIENCE
	Slide 42: DURABILITY
	Slide 43: STATELESS vs STATEFUL
	Slide 44: DURABILITY
	Slide 45: CORRECTNESS & Quality
	Slide 46: CORRECTNESS & Quality
	Slide 47: CORRECTNESS & Quality
	Slide 48: THE TAIL AT SCALE
	Slide 49: THE TAIL AT SCALE
	Slide 50: VERTICAL SCALING
	Slide 51: VERTICAL SCALING
	Slide 52: VERTICAL SCALING
	Slide 53: VERTICAL SCALING
	Slide 54: DATA SHARDING
	Slide 55: DATA SHARDING
	Slide 56: DATA SHARDING
	Slide 57: REPLICATION (horizontal scaling)
	Slide 58: REPLICATION (horizontal scaling)
	Slide 59: REPLICATION (horizontal scaling)
	Slide 60: MULTI-TENANCY
	Slide 61: MULTI-TENANCY
	Slide 62: REQUEST HEDGING
	Slide 63: TIMEOUTS
	Slide 64: TIMEOUTS
	Slide 65: RETRIES
	Slide 66: RETRIES
	Slide 67: RETRIES
	Slide 68: CANCELLATIONS
	Slide 69: CANCELLATIONS
	Slide 70: DEADLINEs
	Slide 71: DEADLINEs
	Slide 72: CANARY REQUESTS
	Slide 73: CANARY REQUESTS
	Slide 74: CANARY RELEASES
	Slide 75: CANARY RELEASES
	Slide 76: DISCUSSION THEMES

