
RELIABILITY IN MODERN 
CLOUD SYSTEMS

Summer 2025



LOGISTICS



ASSIGNMENT 1

❖ Assignment 1 has been released

❖ Due: Saturday 10th May, 2025 5pm CEST.

❖ Each student registered on CMS has their own private fork of the 

assignments repo.

❖ If you do not have access to your repo then contact the course staff 

immediately after class.

❖ We will only grade the officially created forks of the main assignments 

repo.

❖ Remember to pull test fixes from the main repository.
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PAPER SUMMARY

Cloud Computing landscape has changed

❖ Datacentres are heterogeneous due to ending of Moore’s Law

❖ New workloads/applications have fundamentally different 

performance requirements

Guaranteeing tail latency in current landscape is hard

❖ Different hardwares have different performance profiles

❖ Increase in latency variability!
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DISCUSSION THEMES

❖ Why can we not eliminate all performance variability?

Systems will get more complex

Complex systems have more variability
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❖ What is the impact of new workloads and hardware on 

reliability?

Harder to provide reliability guarantees
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DISCUSSION THEMES

❖ What software techniques do we need to handle performance 

variability?

Techniques that reduce the tail latency! Eg: request hedging
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MEASURING SLO

Reliability is the ability of cloud services to consistently perform as 

expected with minimal disruption

Specify reliability of a system using service level objectives!

❖ Service Level Objectives are measurable targets that define the 

expected level of a service’s reliability behaviour

SLOs are measured using a Service Level Indicator (SLI)

The measurement is usually an aggregation of a distribution OR a 

percentage of a total
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RESPONSIVENESS

Service Level Indicator: Request Latency (99th percentile) 

Service Level Objective: 

99% of requests must have latency is lower than 1 second
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AVAILABILITY - GOODPUT

Service Level Indicator: Goodput (# successful reqs / # total reqs)

Service Level Objective:

95% of all requests should succeed
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RESOURCE COST

Service Level Indicator: Resource Utilization

Service Level Objective: 

At least 75% of the allocated resource must not be idle 
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Service Level Indicator: 



RESILIENCE - FAILURES

Service Level Indicator:

❖ MTBF: Mean Time Between Failures

❖ Goal is to maximize the MTBF

❖ Avg. # of incidents in a given time window

❖ Goal is to minimize the number of incidents in the time window
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RESILIENCE

Failures SLIs:

❖ MTBF: Mean Time Between Failures

❖ Goal is to maximize the MTBF

❖ Avg. # of incidents in a given time window

❖ Goal is to minimize the number of incidents in the time window

Recovery SLIs:

❖  MTTR: Mean Time to Recovery

❖ Goal is to minimize the MTTR
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STATELESS VS STATEFUL

Stateless

❖ Does not track app state

❖ Operations are idempotent

❖Maintains very little to no 

“state”

Stateful

❖ Tracks app state

❖ All Operations are not 

idempotent

❖Maintains all the state!



DURABILITY

Primarily defined for stateful services like databases, caches

Service Level Indicator: % of written that is readable

Service Level Objective: Ideally, 100% of the written data is readable
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CORRECTNESS & QUALITY

Definition of quality is application specific

❖ Example SLO: At least 10% of the ads shown in Google Search 

results must result in an ad click

Correctness is measured using tests prior to deployment

During execution, you can track correctness violations

❖ Example SLO: Less than 5% read requests must violate causal 

consistency
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VERTICAL SCALING

❖ Provide more computation 

resources to the service

❖ Assign more CPUs to the 

container executing the 

service

❖ Migrate the service to a more 

powerful machine

If all fails, then just download 

more RAM!



VERTICAL SCALING

Provide more computation 

resources to the service

Reliability Analysis

❖ Limited improvement to 

throughput + goodput

❖ Marginal difference in 

latency

❖ No improvement in uptime!



DATA SHARDING



DATA SHARDING

Only applicable to stateful services

How to have data sharding?



DATA SHARDING

Only applicable to stateful services

How to have data sharding?

+ Better throughput

+ Slightly better latency

+ Lower utilization

+ No single pt of failure

+ No redundancy
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Stateless Services

❖ Add more instances of the service

❖ Put a load balancer in front to direct the requests

❖ Improves throughput 

❖ Worsens latency (we now have an extra hop)



REPLICATION (HORIZONTAL SCALING)

Stateless Services

❖ Add more instances of the service

❖ Put a load balancer in front to direct the requests

❖ Improves throughput 

❖ Worsens latency (we now have an extra hop)

Stateful Services

❖ Improves read throughput; Worsens write throughput
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MULTI-TENANCY

Problem: We have limited capacity, need to maximize the efficiency 

of the hardware resources (specifically compute)

Solution:

❖ Co-locate services so that we pack as many services on a 

machine as possible

❖ Improves resource efficiency and utilization

❖ Horrible for individual service tput + latency



REQUEST HEDGING

Problem: Lot of variability in latency, latency distribution has long 

tails in worst case scenarios

Solution:

❖ Send the same request to multiple (say 2) replicas

❖ Use the result from the faster replica

❖ Do n-times the amount of work to improve latency
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TIMEOUTS

Problem: Have to wait a long time to get any response from an 

overloaded server

Solution: 

❖ Make the request and wait for a specified time period (eg: 1s)

❖ If response doesn’t come in wait period then abort the execution
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server



RETRIES

Problem: Did not receive a timely or successful response from the 

server

Solution
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CANCELLATIONS

Problem: Initial request may have timed out but downstream 

services still keep doing the work

Solution:

❖ If a request is timed-out or cancelled higher up in the call chain, 

propagate the cancellation to all downstream services

❖ Saves wasted work 

❖ Cancellation propagation takes extra calls
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DEADLINES

Problem: Cancellation propagation does not prevent the problem of 

wasted effort

Solution:

❖ For each request, set a deadline that it must finish by

❖ Propagate deadline with request to each server

❖ Cancel requests whenever deadline is set
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Problem: New never-seen-before incoming requests could cause 

issues with the downstream services



CANARY REQUESTS

Problem: New never-seen-before incoming requests could cause 

issues with the downstream services

Solution: 

❖ Send the request to a subset of servers

❖ Wait for successful response from the subset

❖ Abort if not reached the minimum threshold of servers
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CANARY RELEASES

Problem: New releases might be buggy; can bring the system down

Solution:

Roll-out new releases slowly

Instead of updating all instances of a service at once, update 

incrementally

May have stale instances and new instances operating together



DISCUSSION THEMES

❖ When to retry and how to retry?

❖ How should a load balancer balance requests across the replica 

group?

❖ Cancellations and Deadlines try to reduce wasted work. Which 

technique should a system employ?

❖ Are retries good?
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