RELIABILITY IN MODERN
~ CLOUD SYSTEMS

Summer 20257




LOGISTICS




ASSIGNMENT 2

s Assignment is 90% graded

*» Grades will be pushed to the assn2_grades branch

s* Update by tomorrow morning




ASSIGNMENT 3

s* Due today at 5pm CEST




ASSIGNMENT 4

*** Project selections have been sent out
s 1st check in on Monday during office hours.

s 1st Check-in requirement:

’0

» Come up with an implementation + evaluation plan

R

« List out what you need to implement (with and without Blueprint
integration)

<&

** What experiments do you think you will need to run?
 We will authorize every group’s list during the check in



ROOT CAUSE ANALYSIS
DISCUSSION




PAPER SUMMARY




PAPER SUMMARY

*» Enables dynamic monitoring and data collection
s Tracepoints + Aspect-oriented code injection allow for dynamicity

s+ Baggage Propagation carries the necessary information

\/

** This paper proposed Baggage as an abstraction
*» Users can specify queries which get executed during runtime

** Queries use the happened-before join operator

N/

** Happened-before join operator allows for grouping and filtering of
events based on properties that causally precede them



DISCUSSION THEMES

** What is the best method for doing root cause analysis?
** What are the challenges for extracting critical paths?

* How do we efficiently compare two traces?

\/

** How do we compare 1 trace to a group of traces?

\/

* How do we compare two different groups of traces?



DISCUSSION THEMES

** What is the best method for doing root cause analysis?




DISCUSSION THEMES

** What is the best method for doing root cause analysis?




DISCUSSION THEMES

** What are the challenges for extracting critical paths?




DISCUSSION THEMES

** What are the challenges for extracting critical paths?




DISCUSSION THEMES

** How do we efficiently compare two traces?

** How do we compare 1 trace to a group of traces?

** How do we compare two different groups of traces?




DISCUSSION THEMES

** How do we efficiently compare two traces?

** How do we compare 1 trace to a group of traces?
** How do we compare two different groups of traces?




TEST AND VERIFY



A TYPICAL DEVOPS PIPELINE




A TYPICAL DEVOPS PIPELINE

Continuous
Integration




A TYPICAL DEVOPS PIPELINE

Continuous Continuous
Integration Delivery




A TYPICAL DEVOPS PIPELINE

Continuous Continuous Continuous
Integration Delivery Deployment

Code
Test Merge » Code Release » Deployment




A TYPICAL DEVOPS PIPELINE

Continuous Continuous Continuous
Integration Delivery Deployment

Code
Test Merge » Code Release » Deployment




UNIT TESTING




UNIT TESTING

** Tests and Validates each individual component

* Primary focus is functional correctness

‘0

» Component behaves as intended

o%

» Component handles different situations correctly

\/

** Checks correct handling of inputs, outputs, and errors
s* For components with dependencies

\/

% Use mocking framework to mock the behavior of the dependency



INTEGRATION TESTING  §ds




INTEGRATION TESTING  §ds

s Tests the behavior of interacting components
s Correctness of the interaction between two components

» Typically done for services/modules that have dependencies

\/

s Instead of using mock instances for dependencies, use actual

instances




4 4= END-TO-END TESTING 2+




4 5= END-TO-END TESTING Zofde

\/

** Checks whether the application works as intended in whole

\/

< Make requests to the front-end services

\/

s Validate the outputs of the requests
s* White-Box Testing

/

% Test internal state at every stage/step
s Black-Box Testing

/

s Testing without any knowledge of the internal code or architecture

\/

 Not testing or checking the internal state of the system

\/

% Grey Testing

\/

% BlackBox Testing but with partial knowledge

\/

s Useful for crafting tests for edge-cases



FORMAL METHODS

Formal methods make use of mathematical techniques for ensuring
that the systems are correct

The strongest techniques provide proofs of correcthess for a given
system specification

Main drawback of some of these techniques is that they require a
lot of developer effort



LIGHTWEIGHT FORMAL METHODS

¢ Fuzz Testing

s Deterministic Simulation

s Property Testing




FUZZ TESTING

*** Generate test inputs that can expose bugs in programs

** Depending on the fuzzing technique used, test inputs can be
generated in multiple different ways

** Random Fuzzing

\/

s+ Generate random inputs and see how the system handles these inputs

\/

** Also called black-box fuzzing as it doesn’t use any feedback from the
test executions



PROPERTY TESTING

* Developers specify properties that they want the system to hold

** With property testing, the goal is to ensure there are no
violations of these properties during the system execution




TYPES OF PROPERTIES

s+ Safety Properties: System does not enter any bad state
** Liveness Properties: System eventually does something good

The above properties do not necessarily capture all potential
behaviors that a system could exhibit (or properties we would want
from the system)



DETERMINISTIC SIMULATION

* Execute a distributed system in a single-threaded simulator
s* Control all sources of randomness

** Developers can specify orderings of threads and events they
want to explore



HEAVYWEIGHT FORMAL METHODS

s* Model Checking

** Symbolic Execution

+* Formal Verification




SYMBOLIC EXECUTION

s* Executes a program with symbolic inputs

s* Builds all pathways the execution could take with respect to the
symbolic input

s* Combine with fuzzing to generate more interesting inputs that
exercise different paths



+* Build an abstract model of the system

s* Developers provide safety and liveness properties

** Model checker explores all possible pathways and states defined
by the model to find violations of the properties



FORMAL VERIFICATION

** Uses a theorem prover or a constraint solver
** Encode the system behavior in a mathematical form

** Theorem prover/Constraint solver verifies that certain properties
hold for the system behavior described in the mathematical form



RELIABILITY TESTING

We are testing that the system will continue to behave normally in
the presence of errors and faults

The reliability techniques will behave correctly




FAULT INJECTION




FAULT INJECTION

** Inject different type of faults into the system
¢ Ensure that the system can handle the faults correctly

** Where/When to inject faults?

** Fuzzing based fault injection during Cl/CD testing

*» E2E tests augmented with Fault Injection




FAULT INJECTION

** Inject different type of faults into the system
¢ Ensure that the system can handle the faults correctly

** Where/When to inject faults?

** Fuzzing based fault injection during Cl/CD testing

*» E2E tests augmented with Fault Injection
“+ IN PRODUCTION!




CHAOS ENGINEERING




CHAOS ENGINEERING

s Started by Netflix (~10 yrs ago)
* System’s capability to withstand realistic turbulent conditions

*» Doing reliability experiments in production

\/

** Randomly fail a server in a controlled way

\/

** See whether the reliability techniques kick in

*+ Divide into a control group and an experimental group

N/

** Define some steady state behaviour that is hypothesised to continue

s Try to find deviations between the behaviour in the 2 groups



DISCUSSION THEMES

» If you are building a system, which testing techniques are useful?

s If a model checker, for a given model of a system, does not find
any property violations, does this mean that there are no
property violations in the system implementation?

** How can developers combine formal methods with actual
runtime behaviour of implementations?



GOOGLE & GOOGLE CLOUD
OUTAGE




THE INCIDENT

(%) 12Jun 2025 11:46 PDT We will provide an update by Thursday, 2025-06-12 12:15 PDT with current details.
We apologize to all who are affected by the disruption.

Symptoms: Multiple GCP products are experiencing varying level of service impacts.

Workaround: None at this time.




THE INCIDENT

(%) 12Jun 2025 11:46 PDT We will provide an update by Thursday, 2025-06-12 12:15 PDT with current details.
We apologize to all who are affected by the disruption.
Symptoms: Multiple GCP products are experiencing varying level of service impacts.

Workaround: None at this time.

Vertex Al Online Prediction is full recovered as of 18:18 PDT.
All the services are fully recovered from the service issue
) 12Jun 2025 18:27 PDT
We will publish analysis of this incident once we have completed our internal investigation.

We thank you for your patience while we worked on resolving the issue.



THE INCIDENT

(%) 12Jun 2025 11:46 PDT We will provide an update by Thursday, 2025-06-12 12:15 PDT with current details.
We apologize to all who are affected by the disruption.

Svmntoms: Multinle GCP nrodurcts are exneriencing varving level of service imnacts.
Summary

Google Cloud, Google Workspace and Google Security Operations products experienced increased 503 errors in external APl requests, impacting customers.

We deeply apologize for the impact this outage has had. Google Cloud customers and their users trust their businesses to Google, and we will do

better. We apologize for the impact this has had not only on our customers’ businesses and their users but also on the trust of our systems. We are
committed to making improvements to help avoid outages like this moving forward.

Vertex Al Online Prediction is full recovered as of 18:18 PDT.

All the services are fully recovered from the service issue

) 12Jun 2025 18:27 PDT
We will publish analysis of this incident once we have completed our internal investigation.

We thank you for your patience while we worked on resolving the issue.



AFFECTED SERVICES

Google Cloud Products:

Identity and Access Management
Cloud Build

Cloud Key Management Service
Google Cloud Storage

Cloud Monitoring

Google Cloud Dataproc

Cloud Security Command Center
Artifact Registry

Cloud Workflows

Cloud Healthcare

Resource Manager API
Dataproc Metastore

Cloud Run

VMWare engine

Dataplex

Migrate to Virtual Machines
Google BigQuery

Contact Center Al Platform
Google Cloud Deploy

Media CDN

Colab Enterprise

Vertex Gemini API

Cloud Data Fusion

Cloud Asset Inventory
Datastream

Integration Connectors

Apigee

Google Cloud NetApp Volumes
Google Cloud Bigtable

Looker (Google Cloud core)
Looker Studio

Google Cloud Functions

Cloud Load Balancing

Traffic Director

Document Al

AutoML Translation

Pub/Sub Lite

AP| Gateway

Agent Assist

AlloyDB for PostgreSQL
Cloud Firestore

Cloud Logging

Cloud Shell

Cloud Memorystore

Cloud Spanner

Contact Center Insights
Database Migration Service
Dialogflow CX

Dialogflow ES

Google App Engine

Google Cloud Composer
Google Cloud Console
Google Cloud DNS

Google Cloud Pub/Sub
Google Cloud SQL

Google Compute Engine
Identity Platform

Managed Service for Apache Kafka
Memorystore for Memcached
Memorystore for Redis
Memorystore for Redis Cluster
Persistent Disk

Personalized Service Health
Speech-to-Text
Text-to-Speech

Vertex Al Search

Retail API

Vertex Al Feature Store
BigQuery Data Transfer Service
Google Cloud Marketplace
Cloud NAT

Hybrid Connectivity

Cloud Vision

Network Connectivity Center
Cloud Workstations

Google Workspace Products:

AppSheet

Gmail

Google Calendar
Google Drive

Google Chat

Google Voice
Google Docs

Google Meet

Google Cloud Search
Google Tasks




KEY INCIDENT TIMINGS

(All Times US/Pacific)

Incident Start: 12 June, 2025 10:49

All regions except us-centrall mitigated: 12 June, 2025 12:48
Incident End: 12 June, 2025 13:49

Duration: 3 hours

Regions/Zones: Global

How did we communicate?

We posted our first incident report to Cloud Service Health about ~1h after the start of the crashes, due to the Cloud Service Health infrastructure being down
due to this outage. For some customers, the monitoring infrastructure they had running on Google Cloud was also failing, leaving them without a signal of the
incident or an understanding of the impact to their business and/or infrastructure. We will address this going forward.



KEY INCIDENT TIMINGS

(All Times US/Pacific)

Incident Start: 12 june, 2025 10:49 Full Recovery took 7 hours!

Vertex Al Online Prediction is full recovered as of 18:18 PDT.
All the services are fully recovered from the service issue
@ 12 Jun 2025 18:27 PDT
We will publish analysis of this incident once we have completed our internal investigation.

We thank you for your patience while we worked on resolving the issue.

How did we communicate?

We posted our first incident report to Cloud Service Health about ~1h after the start of the crashes, due to the Cloud Service Health infrastructure being down
due to this outage. For some customers, the monitoring infrastructure they had running on Google Cloud was also failing, leaving them without a signal of the
incident or an understanding of the impact to their business and/or infrastructure. We will address this going forward.



KEY INCIDENT TIMINGS

Within 2 minutes, our Site Reliability Engineering team was triaging the incident. Within 10 minutes, the root cause was identified and the red-button (to disable
the serving path) was being put in place. The red-button was ready to roll out ~25 minutes from the start of the incident. Within 40 minutes of the incident, the
red-button rollout was completed, and we started seeing recovery across regions, starting with the smaller ones first.

* Time to Detect: 2 minutes
* Time to find Root Cause: 10 minutes
s Time to Mitigation: 25 minutes-40 minutes

** Time to full recovery: 7 hours



ROOT CAUSE

On May 29, 2025, a new feature was added to Service Control for additional quota policy checks. This code change and binary release went through our region
by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would trigger the code. As a safety
precaution, this code change came with a red-button to turn off that particular policy serving path. The issue with this change was that it did not have
appropriate error handling nor was it feature flag protected. Without the appropriate error handling, the null pointer caused the binary to crash. Feature flags
are used to gradually enable the feature region by region per project, starting with internal projects, to enable us to catch issues. If this had been flag protected,
the issue would have been caught in staging.

On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for policies. Given the global nature
of quota management, this metadata was replicated globally within seconds. This policy data contained unintended blank fields. Service Control, then regionally
exercised quota checks on policies in each regional datastore. This pulled in blank fields for this respective policy change and exercised the code path that hit the
null pointer causing the binaries to go into a crash loop. This occurred globally given each regional deployment.

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMch1SsW



ROOT CAUSE

On May 29, 2025, a new feature was added to Service Control for additional quota policy checks. This code change and binary release went through our region
by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would trigger the code. As a safety
precaution, this code change came with a red-button to turn off that particular policy serving path. The issue with this change was that it did not have
appropriate error handling nor was it feature flag protected. Without the appropriate error handling, the null pointer caused the binary to crash. Feature flags
are used to gradually enable the feature region by region per project, starting with internal projects, to enable us to catch issues. If this had been flag protected,
the issue would have been caught in staging.

On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for policies. Given the global nature
of quota management, this metadata was replicated globally within seconds. This policy data contained unintended blank fields. Service Control, then regionally
exercised quota checks on policies in each regional datastore. This pulled in blank fields for this respective policy change and exercised the code path that hit the
null pointer causing the binaries to go into a crash loop. This occurred globally given each regional deployment.

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMch1SsW



ROOT CAUSE

On May 29, 2025, a new feature was added to Service Control for additional quota policy checks. This code change and binary reljegLT T © N N 26%8
by region rollout, but the code path that failed was never exercised during this rollout due to needing a policy change that would
precaution, this code change came with a red-button to turn off that particular policy serving path. The issue with this change wa
appropriate error handling nor was it feature flag protected. Without the appropriate error handling, the null pointer caused the Vaastav Anan o
are used to gradually enable the feature region by region per project, starting with internal projects, to enable us to catch issues. f§ Replying to @tianyin xu

the issue would have been caught in staging. ‘é’;‘gfgg‘;r‘i'ﬁg;‘gnt:g;ja DeftaiFlans

<  Post &

i 118

On June 12, 2025 at ~10:45am PDT, a policy change was inserted into the regional Spanner tables that Service Control uses for po s
. ] cy . . ] . . @A Tianyin Xu @ @tianyin xu - 3d

of quota management, this metadata was replicated globally within seconds. This policy data contained unintended blank fields. @ Replying to @vaastav05

exercised quota checks on policies in each regional datastore. This pulled in blank fields for this respective policy change and exe lol I always find the definitions of

- : A : : . A : control plane and data plane in
null pointer causing the binaries to go into a crash loop. This occurred globally given each regional deployment. distributed systems to be vague (unlike

in networks). But honestly it does not
feel like a data plane problem...

@ Tianyin Xu @
‘\.'{ @tianyin_xu

Replying to @tianyin_xu and @vaastavO5

| honestly think metadata operations
are mostly about control instead of
data...

20:02 - 14 Jun 25 - 174 Views

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMch1SsW



ROOT CAUSE

Within some of our larger regions, such as us-central-1, as Service Control tasks restarted, it created a herd effect on the underlying infrastructure it depends on
(i.e. that Spanner table), overloading the infrastructure. Service Control did not have the appropriate randomized exponential backoff implemented to avoid this.
It took up to ~2h 40 mins to fully resolve in us-central-1 as we throttled task creation to minimize the impact on the underlying infrastructure and routed traffic
to multi-regional databases to reduce the load. At that point, Service Control and API serving was fully recovered across all regions. Corresponding Google and
Google Cloud products started recovering with some taking longer depending upon their architecture.

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMch1SsW



ROOT CAUSE

Within some of our larger regions, such as us-central-1, as Service Control tasks restarted, it created a herd effect on the underlying infrastructure it depends on
(i.e. that Spanner table), overloading the infrastructure. Service Control did not have the appropriate randomized exponential backoff implemented to avoid this.
It took up to ~2h 40 mins to fully resolve in us-central-1 as we throttled task creation to minimize the impact on the underlying infrastructure and routed traffic
to multi-regional databases to reduce the load. At that point, Service Control and API serving was fully recovered across all regions. Corresponding Google and
Google Cloud products started recovering with some taking longer depending upon their architecture.

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMch1SsW



DISCUSSION THEMES

» If you are building a system, which testing techniques are useful?

s If a model checker, for a given model of a system, does not find
any property violations, does this mean that there are no
property violations in the system implementation?

** How can developers combine formal methods with actual
runtime behaviour of implementations?



	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: Assignment 2
	Slide 4: ASSIGNMENT 3
	Slide 5: ASSIGNMENT 4
	Slide 6: Root cause analysis discussion
	Slide 7: PAPER SUMMARY
	Slide 8: PAPER SUMMARY
	Slide 9: DISCUSSION THEMES
	Slide 10: DISCUSSION THEMES
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: DISCUSSION THEMES
	Slide 16: TEST AND VERIFY
	Slide 17: A Typical devops pipeline
	Slide 18: A Typical devops pipeline
	Slide 19: A Typical devops pipeline
	Slide 20: A Typical devops pipeline
	Slide 21: A Typical devops pipeline
	Slide 22: Unit testing
	Slide 23: Unit testing
	Slide 24: Integration testing
	Slide 25: Integration testing
	Slide 26: End-to-end testing
	Slide 27: End-to-end testing
	Slide 28: Formal methods
	Slide 29: LIGHTWEIGHT Formal methods
	Slide 30: Fuzz testing
	Slide 31: Property testing
	Slide 32: Types of properties
	Slide 33: Deterministic simulation
	Slide 34: HEAVYWEIGHT Formal methods
	Slide 35: SYMBOLIC EXECUTION
	Slide 36: Model checking
	Slide 37: Formal Verification
	Slide 38: Reliability testing
	Slide 39: Fault injection
	Slide 40: Fault injection
	Slide 41: Fault injection
	Slide 42: Chaos Engineering
	Slide 43: Chaos Engineering
	Slide 44: DISCUSSION THEMES
	Slide 45: Google & google cloud outage
	Slide 46: The incident
	Slide 47: The incident
	Slide 48: The incident
	Slide 49: Affected services
	Slide 50: KEY INCIDENT TIMINGS
	Slide 51: KEY INCIDENT TIMINGS
	Slide 52: KEY INCIDENT TIMINGS
	Slide 53: Root CAUSE
	Slide 54: Root CAUSE
	Slide 55: Root CAUSE
	Slide 56: ROOT CAUSE
	Slide 57: ROOT CAUSE
	Slide 58: DISCUSSION THEMES

