
RELIABILITY IN MODERN 
CLOUD SYSTEMS

Summer 2025



LOGISTICS



ASSIGNMENT 2

❖ Assignment is 90% graded

❖ Grades will be pushed to the assn2_grades branch

❖ Update by tomorrow morning



ASSIGNMENT 3

❖ Due today at 5pm CEST



ASSIGNMENT 4

❖ Project selections have been sent out

❖ 1st check in on Monday during office hours.

❖ 1st Check-in requirement:

❖ Come up with an implementation + evaluation plan

❖ List out what you need to implement (with and without Blueprint 

integration)

❖ What experiments do you think you will need to run?

❖ We will authorize every group’s list during the check in



ROOT CAUSE ANALYSIS 
DISCUSSION



PAPER SUMMARY



PAPER SUMMARY

❖ Enables dynamic monitoring and data collection

❖ Tracepoints + Aspect-oriented code injection allow for dynamicity

❖ Baggage Propagation carries the necessary information

❖ This paper proposed Baggage as an abstraction

❖ Users can specify queries which get executed during runtime

❖ Queries use the happened-before join operator

❖ Happened-before join operator allows for grouping and filtering of 

events based on properties that causally precede them



DISCUSSION THEMES

❖ What is the best method for doing root cause analysis?

❖ What are the challenges for extracting critical paths?

❖ How do we efficiently compare two traces?

❖ How do we compare 1 trace to a group of traces?

❖ How do we compare two different groups of traces?



DISCUSSION THEMES

❖ What is the best method for doing root cause analysis?



DISCUSSION THEMES

❖ What is the best method for doing root cause analysis?

There is no strict best method. All methods provide some value. 

Automated methods usually provide more value but are inflexible.



DISCUSSION THEMES

❖ What are the challenges for extracting critical paths?



DISCUSSION THEMES

❖ What are the challenges for extracting critical paths?

Spans may seem totally ordered by time but that’s not necessarily 

true as clocks at different nodes may not be synchronized



DISCUSSION THEMES

❖ How do we efficiently compare two traces?

❖ How do we compare 1 trace to a group of traces?

❖ How do we compare two different groups of traces?



DISCUSSION THEMES

❖ How do we efficiently compare two traces?

❖ How do we compare 1 trace to a group of traces?

❖ How do we compare two different groups of traces?

This is currently an open-research question. Comparisons are 

best effort and easier to do with numerical attributes of traces.



TEST AND VERIFY



A TYPICAL DEVOPS PIPELINE



A TYPICAL DEVOPS PIPELINE

Continuous 

Integration

Build Test Merge



A TYPICAL DEVOPS PIPELINE

Continuous 

Integration

Continuous 

Delivery

Build Test Merge Code Release

Also runs a 

battery of 

automated 

tests



A TYPICAL DEVOPS PIPELINE

Continuous 

Integration

Continuous 

Delivery

Continuous 

Deployment

Build Test Merge Code Release
Code 

Deployment



A TYPICAL DEVOPS PIPELINE

Continuous 

Integration

Continuous 

Delivery

Continuous 

Deployment

Build Test Merge Code Release
Code 

Deployment



UNIT TESTING



UNIT TESTING

❖ Tests and Validates each individual component

❖ Primary focus is functional correctness

❖ Component behaves as intended

❖ Component handles different situations correctly

❖ Checks correct handling of inputs, outputs, and errors

❖ For components with dependencies

❖ Use mocking framework to mock the behavior of the dependency



INTEGRATION TESTING



INTEGRATION TESTING

❖ Tests the behavior of interacting components

❖ Correctness of the interaction between two components

❖ Typically done for services/modules that have dependencies

❖ Instead of using mock instances for dependencies, use actual 

instances



END-TO-END TESTING



END-TO-END TESTING

❖ Checks whether the application works as intended in whole

❖ Make requests to the front-end services

❖ Validate the outputs of the requests

❖ White-Box Testing

❖ Test internal state at every stage/step

❖ Black-Box Testing

❖ Testing without any knowledge of the internal code or architecture

❖ Not testing or checking the internal state of the system

❖ Grey Testing

❖ BlackBox Testing but with partial knowledge

❖ Useful for crafting tests for edge-cases



FORMAL METHODS

Formal methods make use of mathematical techniques for ensuring 

that the systems are correct

The strongest techniques provide proofs of correctness for a given 

system specification

Main drawback of some of these techniques is that they require a 

lot of developer effort



LIGHTWEIGHT FORMAL METHODS

❖ Fuzz Testing

❖ Deterministic Simulation

❖ Property Testing

Systems Correctness Practices at Amazon Web Services, CACM’25, Brooker and Desai



FUZZ TESTING

❖ Generate test inputs that can expose bugs in programs

❖ Depending on the fuzzing technique used, test inputs can be 
generated in multiple different ways

❖ Random Fuzzing

❖ Generate random inputs and see how the system handles these inputs

❖ Also called black-box fuzzing as it doesn’t use any feedback from the 
test executions



PROPERTY TESTING

❖ Developers specify properties that they want the system to hold

❖ With property testing, the goal is to ensure there are no 

violations of these properties during the system execution



TYPES OF PROPERTIES

❖ Safety Properties: System does not enter any bad state

❖ Liveness Properties: System eventually does something good

The above properties do not necessarily capture all potential 

behaviors that a system could exhibit (or properties we would want 

from the system)



DETERMINISTIC SIMULATION

❖ Execute a distributed system in a single-threaded simulator

❖ Control all sources of randomness

❖ Developers can specify orderings of threads and events they 

want to explore



HEAVYWEIGHT FORMAL METHODS

❖ Model Checking

❖ Symbolic Execution

❖ Formal Verification

Systems Correctness Practices at Amazon Web Services, CACM’25, Brooker and Desai



SYMBOLIC EXECUTION

❖ Executes a program with symbolic inputs

❖ Builds all pathways the execution could take with respect to the 

symbolic input

❖ Combine with fuzzing to generate more interesting inputs that 

exercise different paths



MODEL CHECKING

❖ Build an abstract model of the system

❖ Developers provide safety and liveness properties

❖ Model checker explores all possible pathways and states defined 

by the model to find violations of the properties



FORMAL VERIFICATION

❖ Uses a theorem prover or a constraint solver

❖ Encode the system behavior in a mathematical form

❖ Theorem prover/Constraint solver verifies that certain properties 

hold for the system behavior described in the mathematical form



RELIABILITY TESTING

We are testing that the system will continue to behave normally in 

the presence of errors and faults

The reliability techniques will behave correctly



FAULT INJECTION



FAULT INJECTION

❖ Inject different type of faults into the system

❖ Ensure that the system can handle the faults correctly

❖ Where/When to inject faults?

❖ Fuzzing based fault injection during CI/CD testing

❖ E2E tests augmented with Fault Injection



FAULT INJECTION

❖ Inject different type of faults into the system

❖ Ensure that the system can handle the faults correctly

❖ Where/When to inject faults?

❖ Fuzzing based fault injection during CI/CD testing

❖ E2E tests augmented with Fault Injection

❖ IN PRODUCTION!



CHAOS ENGINEERING



CHAOS ENGINEERING

❖ Started by Netflix (~10 yrs ago)

❖ System’s capability to withstand realistic turbulent conditions

❖ Doing reliability experiments in production

❖ Randomly fail a server in a controlled way

❖ See whether the reliability techniques kick in

❖ Divide into a control group and an experimental group

❖ Define some steady state behaviour that is hypothesised to continue

❖ Try to find deviations between the behaviour in the 2 groups

Source: https://principlesofchaos.org/



DISCUSSION THEMES

❖ If you are building a system, which testing techniques are useful?

❖ If a model checker, for a given model of a system, does not find 

any property violations, does this mean that there are no 

property violations in the system implementation?

❖ How can developers combine formal methods with actual 

runtime behaviour of implementations?



GOOGLE & GOOGLE CLOUD 
OUTAGE



THE INCIDENT

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



THE INCIDENT

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



THE INCIDENT

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



AFFECTED SERVICES

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



KEY INCIDENT TIMINGS

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



KEY INCIDENT TIMINGS

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

Full Recovery took 7 hours!



KEY INCIDENT TIMINGS

❖ Time to Detect: 2 minutes

❖ Time to find Root Cause: 10 minutes

❖ Time to Mitigation: 25 minutes-40 minutes

❖ Time to full recovery: 7 hours

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW



ROOT CAUSE

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

What kind of failure is this?



ROOT CAUSE

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

Cross-System Interaction Failure!!!



ROOT CAUSE

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

Cross-System Interaction Failure!!!



ROOT CAUSE

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

What kind of failure is this?



ROOT CAUSE

Source: https://status.cloud.google.com/incidents/ow5i3PPK96RduMcb1SsW

Metastability Failure!



DISCUSSION THEMES

❖ If you are building a system, which testing techniques are useful?

❖ If a model checker, for a given model of a system, does not find 

any property violations, does this mean that there are no 

property violations in the system implementation?

❖ How can developers combine formal methods with actual 

runtime behaviour of implementations?


	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: Assignment 2
	Slide 4: ASSIGNMENT 3
	Slide 5: ASSIGNMENT 4
	Slide 6: Root cause analysis discussion
	Slide 7: PAPER SUMMARY
	Slide 8: PAPER SUMMARY
	Slide 9: DISCUSSION THEMES
	Slide 10: DISCUSSION THEMES
	Slide 11: DISCUSSION THEMES
	Slide 12: DISCUSSION THEMES
	Slide 13: DISCUSSION THEMES
	Slide 14: DISCUSSION THEMES
	Slide 15: DISCUSSION THEMES
	Slide 16: TEST AND VERIFY
	Slide 17: A Typical devops pipeline
	Slide 18: A Typical devops pipeline
	Slide 19: A Typical devops pipeline
	Slide 20: A Typical devops pipeline
	Slide 21: A Typical devops pipeline
	Slide 22: Unit testing
	Slide 23: Unit testing
	Slide 24: Integration testing
	Slide 25: Integration testing
	Slide 26: End-to-end testing
	Slide 27: End-to-end testing
	Slide 28: Formal methods
	Slide 29: LIGHTWEIGHT Formal methods
	Slide 30: Fuzz testing
	Slide 31: Property testing
	Slide 32: Types of properties
	Slide 33: Deterministic simulation
	Slide 34: HEAVYWEIGHT Formal methods
	Slide 35: SYMBOLIC EXECUTION
	Slide 36: Model checking
	Slide 37: Formal Verification
	Slide 38: Reliability testing
	Slide 39: Fault injection
	Slide 40: Fault injection
	Slide 41: Fault injection
	Slide 42: Chaos Engineering
	Slide 43: Chaos Engineering
	Slide 44: DISCUSSION THEMES
	Slide 45: Google & google cloud outage
	Slide 46: The incident
	Slide 47: The incident
	Slide 48: The incident
	Slide 49: Affected services
	Slide 50: KEY INCIDENT TIMINGS
	Slide 51: KEY INCIDENT TIMINGS
	Slide 52: KEY INCIDENT TIMINGS
	Slide 53: Root CAUSE
	Slide 54: Root CAUSE
	Slide 55: Root CAUSE
	Slide 56: ROOT CAUSE
	Slide 57: ROOT CAUSE
	Slide 58: DISCUSSION THEMES

