
RELIABILITY IN MODERN 
CLOUD SYSTEMS

Summer 2025



LOGISTICS



ASSIGNMENT 2

❖ Grades will be released Friday



ASSIGNMENT 3

❖ Due Date: Wednesday, June 18th 5pm

❖ Description: Reproducing a retry storm metastability failure

❖ Not using the luggage sharing application

❖ Instead using Hotel Reservation from DeathStarBench benchmark suite



ASSIGNMENT 4: OPEN ENDED 
PROJECT

❖ Potential topics have been posted on CMS

❖ Will be done in teams of 2 (1 team will have 3 members)

❖ Each group will work on a separate project

❖ Projects will be assigned by the instructors

❖ Send top 5 project preferences and teams via e-mail by Monday 5pm 
CEST

❖ Email Id: vaastav@mpi-sws.org

❖ If choosing a project from intermediate difficulty as a top choice 
then please include a justification as to why



ASSIGNMENT 4 GRADING

❖ Each member of the team will be assigned the same grade

❖ 40% Presentation (16th July, 2025)

❖ 25% on content

❖ 10% Q/A

❖ 5% presentation

❖ 60% Implementation (due 21st July, 2025 9am PST)

❖ 30% Technical Implementation * Difficulty Bonus

❖ 10% weekly check ins (every monday during office hours)

❖ 10% Integration + Use of Blueprint

❖ 10% Ease-of-use + Documentation

5% Bonus available for those who successfully produce a Pull Request for Blueprint



METASTABILITY ANALYSIS 
DISCUSSION



DISCUSSION THEMES

❖ How to analyze systems for metastability without actually 

executing the system?



ANALYZING METASTABILITY 
FAILURES 

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING METASTABILITY 
FAILURES – KEY PROBLEM

We want to identify where our systems are vulnerable to metastable 

faillures before they fail!

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING METASTABILITY 
FAILURES – CHALLENGES

We want to identify where our systems are vulnerable to metastable 

faillures before they fail!

Analyzing for metastability is difficult

❖ Systems are arbitrarily large and complex

❖ Large parameter space

❖ Need to experiment with large parameter sweeps to find out 

potential breaking limits of the system

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING METASTABILITY 
FAILURES – CHALLENGES

We want to identify where our systems are vulnerable to metastable 

faillures before they fail!

Analyzing for metastability is difficult

❖ Systems are arbitrarily large and complex

❖ Large parameter space

❖ Need to experiment with large parameter sweeps to find out 

potential breaking limits of the system

Requires a lot of manual effort

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING WITHOUT EXECUTING

Idea: Instead of executing the system and doing large parameter 

sweeps, analyze the same server configurations at different levels 

of abstraction

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING WITHOUT EXECUTING

Idea: Analyze the same server configurations at different levels of abstraction

Key Benefit: Cost of analyzing with abstractions is lower!

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING WITHOUT EXECUTING

Connect the tools at different abstractions to maintain precision

Key Benefit: Cost of analyzing with abstractions is lower!

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING WITHOUT EXECUTING

Key Benefit: Cost of analyzing with abstractions is lower!

Predictions from abstract models direct experiments to specific parameters

Analyzing Metastable Failures, May 2025, Isaacs et al



ANALYZING WITHOUT EXECUTING

Predictions from abstract models direct experiments to specific parameters

Key Benefit: No need for large parameter sweeps

Analyzing Metastable Failures, May 2025, Isaacs et al



4 DIFFERENT MODELS

❖ CTMC: Continuous-Time Markov Chains

❖ DES: Discrete Event Simulator

❖ Emulation

❖ Stress Testing

Analyzing Metastable Failures, May 2025, Isaacs et al



CTMC

❖ Model the system as a CTMC (Continuous-Time Markov Chain)

Analyzing Metastable Failures, May 2025, Isaacs et al



CTMC

❖ Model the system as a CTMC (Continuous-Time Markov Chain)

❖ CTMC Basics:

❖ System can be in 1 of many finite states

❖ System transitions from 1 state to another with some transition 

probability

❖ Markov Property holds: The next state of the system only depends on 

the current state of the system (and none of the previous states)

Analyzing Metastable Failures, May 2025, Isaacs et al



CTMC

❖ Model the system as a CTMC (Continuous-Time Markov Chain)

❖ Key factors:

❖ Request rate from clients

❖ Number of retries per request, timeouts

❖ Length of the queue at any service, max size of the queue

❖ Number of requests waiting to be retried (how we do workload 

amplification)

Analyzing Metastable Failures, May 2025, Isaacs et al



CTMC - DSL

Analyzing Metastable Failures, May 2025, Isaacs et al



CTMC – SAMPLE ANALYSIS

Analyzing Metastable Failures, May 2025, Isaacs et al

Red dot shows where 

the metastable failure 

will happen

Queue size: 20000

Orbit length: 50



DISCRETE EVENT SIMULATION

❖ Replace some of the mathematical abstractions with actual 

implementations of the core abstractions

❖ Use a discrete-event simulator to simulate the behavior of the 

system

❖ Simulates one of the chosen pathways in the CTMC

❖ Allows white-box testing

Analyzing Metastable Failures, May 2025, Isaacs et al



EMULATION

❖ Add real-world factors not modeled by the simulation

❖ Includes resource contention, load balancing, rpc framework

❖ Bare-bones service that does no work but sleeps for a specific 

amount of time chosen from a distribution 

Analyzing Metastable Failures, May 2025, Isaacs et al



STRESS TESTING

❖ Run a workload along with triggers against the actual deployed 

system

❖ This is essentially executing a targeted subset of the original 

parameter sweeps 

❖ This provides the necessary confirmation of the predictions!

❖ Without this confirmation, predictions are not actionable

Analyzing Metastable Failures, May 2025, Isaacs et al



ROOT CAUSE ANALYSIS



MAJOR STAGES OF AN INCIDENT



MAJOR STAGES OF AN INCIDENT

❖ Detection: Incident is either detected by a service monitor or 

reported by a customer



MAJOR STAGES OF AN INCIDENT

❖ Detection: Incident is either detected by a service monitor or 

reported by a customer

❖ Root Cause Analysis: Investigation by an On-Call Engineer to 

identify the root cause



MAJOR STAGES OF AN INCIDENT

❖ Detection: Incident is either detected by a service monitor or 

reported by a customer

❖ Root Cause Analysis: Investigation by an On-Call Engineer to 

identify the root cause

❖ Mitigation: Executing steps to temporarily fix the impact of the 

incident



PERMANENT FIXES

Permanent Fixes requires more in-depth root cause analysis

❖ During incident management the main thing is to quickly 

mitigate the impact

❖ Fixing the underlying issue requires more complex analyses



VISUALIZATION TOOLS AND 
DASHBOARDS



SINGLE TRACE VIEW

Jaeger Trace View



SINGLE TRACE VIEW + AGGREGATE 
DATA

Aggregate-Driven Trace Visualizations for Performance Debugging, May 2020, Anand et al



TRACE COMPARISONS



BUGGY TRACES DEVIATE FROM 
NORMAL TRACES

Performance and Correctness 
issues manifest as mutations in 
trace execution timings and 
structure

❖ The bug may cause extra 
operation(s) to happen

❖ The bug may prevent certain 
operation(s) from executing

❖ The bug may increase the 
timing of operation(s)

37



KEY DEBUGGING TASK: COMPARING 
TWO TRACES

To identify probable root 

cause(s), developers must 

compare the buggy trace with a 

normal behaviour trace

38



COMPARING TWO TRACES IS NON-TRIVIAL

Traces can be too big

❖ Thousands of spans

❖ Difficult to compare changes 

visually

Two traces can differ in small 

but important ways

❖ Non-trivial for users to find 

these small changes

39



COMPARING REQUEST FLOWS

Diagnosing performance changes by comparing request flows, April 2011, Sambasivan et al



SPECTROSCOPE WORKFLOW

Diagnosing performance changes by comparing request flows, April 2011, Sambasivan et al



COMPARING REQUEST FLOWS

Spectroscope is a tool for comparing two request flows

❖ Converts each request flow into a single string

❖ Categorizes each request flow and collects statistics for each category

❖ Comparisons are done within a category

❖ Provides heuristics for identifying mutations, precursors, and for 

ranking them

Diagnosing performance changes by comparing request flows, April 2011, Sambasivan et al



CRITICAL PATH ANALYSIS



CRITICAL PATH ANALYSIS

In this approach, we find the critical path of the request through the 

whole execution trace.

Critical Path is the longest sequence of dependent operations or 

spans that determines the total end-to-end latency of a request.



CRITICAL PATH - BENEFITS

❖ Reduces the amount of spans to consider to the key spans that 

contributed the latency of the request

❖ Easier to understand as compared to full traces



CRITICAL PATH - EXAMPLE

CRISP: Critical Path Analysis of Large-Scale Microservice Architectures, July 2022, Zhang et al

In this execution graph, the path highlighted in 

yellow is the critical path for the request



CRITICAL PATH - EXAMPLE

CRISP: Critical Path Analysis of Large-Scale Microservice Architectures, July 2022, Zhang et al



CRITICAL PATH - ALGORITHM

CRISP: Critical Path Analysis of Large-Scale Microservice Architectures, July 2022, Zhang et al



CRITICAL PATH IN ACTION

The overlaid black lines on the spans 

show the critical path segments for the 

request’s execution trace



CAUSAL INFERENCE

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation

The key idea: Use causal inference and reasoning to figure out the 

root causes of unexpected observed latencies (or some other metric 

of interest)



CAUSAL INFERENCE

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 1: BUILDING A CAUSAL GRAPH

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 1: BUILDING A CAUSAL GRAPH

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 2: SETTING UP CAUSAL 
EQUATIONS

Caching_service_latency = 

product_db_latency * A + Constant

Product_service_latency = 

Customer_db_latency * B + 

Shipping_cost_service_latency * C 

+ Caching_service_latency * D + 

Constant

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 2: SETTING UP CAUSAL 
EQUATIONS

Execution order defines how to 

combine latencies

Sequential calls can be combined 

by simply adding latencies

Concurrent calls can be combined 

by taking the max

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 3: FIT THE MODEL

❖ Use collected metrics data to fit the model at each node

❖ Each request is essentially a row in the data used to “train” 

the model at every node

❖ This basically finds the values of the coefficients for each 

value in the causal equation

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



STEP 4: USE THE MODEL TO 
ATTRIBUTE OUTLIER SCORES

❖ Provide the outlier data and plug it in to the model to see which 

service is attributing the most for the outlier behavior

❖ Higher the attribution score for a service, the more it impacts to 

the request being an outlier

Root cause analysis (RCA) of latencies in a microservice architecture, dowhy Documentation



CAUSAL INFERENCE

❖ There are a lot of methods for scoring as well as for constructing 

the causal graph automatically from collected data

❖ This is still a progressing field and we do not have an answer to 

what is the best method and how well does this work



DISCUSSION THEMES

❖ What is the best method for doing root cause analysis?

❖ What are the challenges for extracting critical paths?

❖ How do we efficiently compare two traces?

❖ How do we compare 1 trace to a group of traces?

❖ How do we compare two different groups of traces?


	Slide 1: Reliability in Modern Cloud Systems
	Slide 2: LOGISTICS
	Slide 3: ASSIGNMENT 2
	Slide 4: ASSIGNMENT 3
	Slide 5: ASSIGNMENT 4: Open ended project
	Slide 6: Assignment 4 grading
	Slide 7: METASTABILITY ANALYSIS DISCUSSION
	Slide 8: DISCUSSION THEMES
	Slide 9: Analyzing metastability failures 
	Slide 10: Analyzing metastability failures – key problem
	Slide 11: Analyzing metastability failures – Challenges
	Slide 12: Analyzing metastability failures – Challenges
	Slide 13: Analyzing without executing
	Slide 14: Analyzing without executing
	Slide 15: Analyzing without executing
	Slide 16: Analyzing without executing
	Slide 17: Analyzing without executing
	Slide 18: 4 different models
	Slide 19: CTMC
	Slide 20: CTMC
	Slide 21: CTMC
	Slide 22: CTMC - dsl
	Slide 23: CTMC – SAMPLE ANALYSIS
	Slide 24: DISCRETE EVENT SIMULATION
	Slide 25: EMULATION
	Slide 26: Stress testing
	Slide 27: ROOT CAUSE ANALYSIS
	Slide 28: Major stages of an incident
	Slide 29: Major stages of an incident
	Slide 30: Major stages of an incident
	Slide 31: Major stages of an incident
	Slide 32: PERMANENT FIXES
	Slide 33: Visualization tools and dashboards
	Slide 34: Single trace view
	Slide 35: Single trace view + aggregate data
	Slide 36: Trace comparisons
	Slide 37: Buggy traces deviate from normal traces
	Slide 38: Key debugging task: Comparing two traces
	Slide 39: Comparing two traces is non-trivial
	Slide 40: Comparing request flows
	Slide 41: SPECTROSCOPE WORKFLOW
	Slide 42: Comparing request flows
	Slide 43: Critical path analysis
	Slide 44: Critical path analysis
	Slide 45: Critical path - benefits
	Slide 46: CRITICAL PATH - EXAMPLE
	Slide 47: CRITICAL PATH - EXAMPLE
	Slide 48: CRITICAL PATH - ALGORITHM
	Slide 49: CRITICAL PATH IN ACTION
	Slide 50: Causal inference
	Slide 51: Causal inference
	Slide 52: Step 1: building a causal graph
	Slide 53: Step 1: building a causal graph
	Slide 54: Step 2: Setting up causal equations
	Slide 55: Step 2: Setting up causal equations
	Slide 56: Step 3: Fit the model
	Slide 57: Step 4: Use the model to attribute OUTLIER scores
	Slide 58: Causal inference
	Slide 59: DISCUSSION THEMES

