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Abstract 

Quantifying microbiome species and composition from metagenomic assa y s is of ten c hallenging due to its time-consuming nature and compu- 
t ational complexit y. In Bioinf ormatics, k -mer-based approaches w ere long established to e xpedite the analy sis of large sequencing data and are 
now widely used to annotate metagenomic data. We make use of k -mer counting techniques for efficient and accurate compositional analysis of 
microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing 
or complete data e x change. It handles div erse sequencing platf orms, including short single-end, paired-end, and long read technologies. Our 
sk etch-based w orkflo w significantly reduces the data v olume transferred from the user to the serv er (up to 99.59% siz e reduction) to subse- 
quently perf orm tax onomic profiling with enhanced efficiency and privacy. Mibianto offers functionality be y ond k -mer quantification; it supports 
advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standard- 
ization of computational w orkflo ws, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale 
experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic 
studies. Mibianto is freely a v ailable without the need for a login at: https:// www.ccb.uni-saarland.de/ mibianto . 
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entire micro-ecosystems via metagenomics ( 1 ). If the chal-
lenges arising from whole metagenome sequencing data anal-
ysis can be overcome, likely unprecedented valuable insights
can be gained into diverse research areas such as bioreme-
diation, natural compound discovery, and human health ( 2–
5 ). In practice however, whole metagenome sequencing ex-
periments generate enormous quantities of sequencing data,
rendering sufficient expertise in computational analysis indis-
pensable ( 6 ). To support researchers in their data evaluation
workflow, a wide variety of online data processing tools have
emerged. MG-RAST ( 7 ), MGnify ( 8 ), Galaxy ( 9 ) and similar
tools accept uploads of entire raw datasets and process them
on their servers through custom data analysis pipelines. While
this method of data management is intuitive and allows for
in-depth analysis, it requires a fast internet connection on the
user side, a solid infrastructure on the service provider side,
and a considerable amount of processing time. For studies in-
volving sensitive clinical data, users must consider all legal
aspects before trusting any third parties. Furthermore, with
continuously decreasing sequencing costs, most cohort stud-
ies steadily increase their data output, rendering large data
exchange pipelines a major inconvenience for most end-users.
One way to circumvent this issue is to request users to prepro-
cess all raw data on their end before uploading it to a service
that performs the downstream analysis. For instance, our tool
BusyBee Web provides comprehensive binning functionality
at the expense that users need to upload a complete assembly
( 10 ). In a similar manner, the tool MicrobiomeAnalyst, per-
forms extensive downstream analysis on taxonomic counts
( 11 ), for which users are required to generate and upload
a count matrix from the raw sequencing data. Even though
many out-of-the-box solutions exist to solve both mentioned
user-imposed challenges, lack of sufficient computational ex-
pertise prevents many researchers from accessing them. An al-
ternative approach to addressing the challenges posed by the
vast volumes of data in metagenomics is to leverage recent in-
novations in hashing-based data analysis techniques, exempli-
fied by methods such as ST A T ( 12 ) and Sourmash ( 13 ). These
tools utilize efficient algorithms and approximations to handle
large datasets effectively. Building upon these advancements,
innovative web servers like PebbleScout ( 14 ) and Branchwa-
ter ( 15 ) have emerged, specializing in rapidly identifying the
most similar samples within expansive databases. 

Here, we propose Mibianto, an online whole metagenome
sequencing data analysis web server centered around com-
positional analysis. It is light on user connection require-
ments, trivial to get started, and capable of quickly processing
small to medium-sized studies. The tool leverages the recent
progress made in FracMinHash-based data analysis to com-
pute and transmit a compressed representation of the data to
the remote server where it then performs taxonomic profil-
ing ( 16 ). Once a job submission is finished, it provides a wide
range of state-of-the-art analysis options, visualizations, and
recommendations for further interactive analysis. 

Materials and methods 

Mibianto is composed of three main components. First, the
initial submission interface, where users are prompted to se-
lect metagenomic reads and metadata. Second, our server-side
data analysis pipeline, which handles most of the computa-
tionally intensive tasks. Lastly, the result interface offers inter-
active data exploration, sharing and exporting capabilities. 
Taxonomic profiling 

Mibianto circumvents transferring sequencing reads directly.
Instead, it transfers a small sketch of k -mers sampled from the 
reads using the FracMinHash ( 16 ,17 ) implementation of the 
WebAssembly version of Sourmash ( 13 ). A k -mer is a short se- 
quence of fixed length k (using k = 51 in this concrete case).
The set W of all k -mers contained within a FASTQ file is re- 
duced to a small sample of average fraction 1 /s for a scaling 
constant s > 1 as follows. Given a hash function h that maps 
each of the 4 

k possible DNA k -mers to an integer i in the in- 
terval [ 0 , H ] , we only select k -mers whose hash value is at 
most H/s , i.e. from W , we keep only the sketch of integer hash 

values 

FRA C s ( W ) := 

{
h ( W ) | w ∈ W for which h ( w ) ≤ H 

s 

}
. 

Note that the size of this set varies for each sample but 
is on average 1 /s of the original size of W . These sketches 
can be used to estimate overlap (Jaccard coefficients) or con- 
tainment between large sets while using only a small frac- 
tion of the space. To be able to perform this computation 

on the client side, sourmash was compiled from Rust to We- 
bAssembly. We achieved this conversion with the rust pack- 
age manager cargo (v:1.65.0), rustc (v:1.65.0), wasm-pack 

(v:0.9.1), and sourmash (v:4.6.1). Via JavaScript the user in- 
put files get decompressed and streamed to the WebAssembly 
package after which it is transmitted to the server. For ref- 
erence, the computation of a 150 bp paired-end sample con- 
taining 8 Gbp takes around 15 minutes on a standard con- 
sumer laptop. Users may select to save their metadata and 

hashes on the web server for later reusage. Once the data up- 
load is completed, taxonomic profiling starts, and the user 
may enter a waiting queue and receive a unique job identi- 
fier. To ease software maintenance, we implemented the tax- 
onomic profiling pipeline in snakemake (v:7.18.2) ( 18 ). Data 
processing closely follows the sourmash documentation from 

GitHub at a fixed k -mer size of 51. Sketches of each sample are 
compared against the Genome Taxonomy Database (GTDB) 
(v:rs207) ( 19 ) with the sourmash gather command. Based on 

this these results we approximate taxonomic abundances fol- 
lowing the proposed methodology of Chou and Reiter ( 20 ).
Next, taxonomic counts of all samples are aggregated, taxo- 
nomic annotations, sample data, and a phylogenetic tree are 
attached, and a phyloseq (v: 1.42.0) object is saved ( 21 ). Upon 

successful completion of the server-side processing pipeline,
the user is forwarded from the queue to the results page,
where a wide range of further analyses can be performed,
and two download options are available. A phyloseq object 
and an Excel file with taxonomic counts can be downloaded,
aiming to serve users with and without programming skills,
respectively. 

Compositional analysis 

Users that prefer additional support can refer to our results 
page for state-of-the-art compositional analyses supported 

with rich interactive visualization and customization options.
We also implemented various data normalization options,
namely compositional, z -score, log 10 , log 10 p , hellinger, cen- 
tered log-ratio and additive log-ratio. Moreover, users may 
filter their data by removing individual samples or opera- 
tional taxonomic units (OTU) based on abundance criteria.
Alpha diversity can be visualized and checked for significant 
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Figure 1. Mibianto results of the protocol comparison after minor adjustments to the visualizations downloaded from the server. ( A ) Assignment rate for 
all samples. Samples with the prefix SRR18 were sequenced with Oxford nanopore sequencing. ( B ) Quality control proxy computed on 
FracMinHash-based dissimilarities without co-embedding of our precomputed samples. ( C ) Number of observed species in each sample, split by DNA 

extraction kit. ( D ) Short-read sequencing samples were embedded with principal coordinate analysis on Bray-Curtis distances computed on the species 
le v el. 

d  

t  

t  

g  

t  

r  

e  

o  

i  

f  

s  

a  

t  

c  

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/W

1/W
407/7666988 by Saarlaendische U

niversitaets- und Landesbibliothek Saarbruecken user on 28 O
ctober 2024
ifferences among cohort or sample groups. Further, ordina-
ion analysis is supported by a range of dimensionality reduc-
ion methods and dissimilarity measures. To this end, we inte-
rated major parts of microViz, which allows for an interac-
ive selection of samples in the embedding and displays their
elative composition ( 22 ). We also provide a table view where
stimated abundances are numerically displayed for each tax-
nomy. Individual OTUs can be selected, and their normal-
zed abundances are displayed across samples. Most relevant
or clinical applications, we use a list of potentially pathogenic
pecies from gcPathogen ( 23 ) to automatically highlight them
mong the results. In case higher taxonomic ranks are of in-
erest, we highlight an OTU as a potential pathogen when it
ontains at least one potentially pathogenic species. Finally,
we implemented differential abundance analysis with AN-
COMBC (v:2.0.1) ( 24 ). 

Proxies for quality control 

Quality control (QC) is a crucial step of every sequencing
analysis workflow. Performing QC on the user side would
aggravate the computational burden on their end. How-
ever, since Mibianto only transfers hashed information to the
server, QC on the server side becomes a challenge. We ad-
dressed this issue by computing several proxies for QC and
forwarding users to further online analysis with e.g. BusyBee
Web in case of apparent data anomalies. First, the estimate
of the overall assignment rate from sourmash is displayed
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Figure 2. Mibianto results of the cohort study after minor adjustments to the visualizations downloaded from the server. ( A ) Shannon diversity 
computed on species le v el grouped by cohort and split by timepoint. ( B ) Ordination analysis using non-metric multidimensional scaling on Bray-Curtis 
distances. ( C ) Abundance of F. prausnitzii_C in the different cohort groups after center log-ratio normalization. 
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to the user on the results page indicating how robustly the
community of each sample was quantified. Low assignment
rates indicate either that the submitted community is not ad-
equately represented in the database or that quality issues ex-
ist. Second, we compare user hashes against a precomputed
QC dataset by computing distances with the built-in com-
parison from sourmash. This QC dataset was compiled by
downloading metagenomics samples along with annotations
from SRA. Adapter and host DNA contaminations were esti-
mated with trimgalore (v: 0.6.10) ( 25 ) and bowtie2 (v: 2.5.1)
( 26 ) was used for the alignment against the human genome.
Spatial proximity in co-embeddings of QC samples with in-
creased contamination might be indicative of similar issues
in user data. For clinical cohort studies, we annotate poten-
tial outliers using the local outlier factor (LOF) from Desc-
Tools (v: 0.99.47) ( 27 ). We note that the local outlier fac-
tor highlights abnormal clustering behavior of individual data
points. Yet, depending on the experimental setup, this may be 
expected. 

Case studies 

To explore the potential and limitations of our new on- 
line tool, we provide an example analysis of two different 
datasets, comprising one classical cohort study, seven biospec- 
imens, four DNA extraction protocols, and two different se- 
quencing technologies. The datasets by Rehner et al. ( 28 ) 
and Becker et al. ( 29 ) were fully processed with our imple- 
mented snakemake pipeline to ensure that results can be repli- 
cated. Original metadata classes were curated. Pipeline out- 
puts were integrated into the web server and explored us- 
ing the results page. In the cohort study, the 4-week time- 
point was removed. The dataset by Rehner et al. ( 28 ) reports 
DNA sequencing obtained from bile, stool, saliva, plaque, spu- 
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Figure 3. Scatter plot of normalized base-2 logarithms of k -mer counts 
vs. kallisto FPKM values; one point per expressed gene per sample from 

10 different samples (103.415 points o v erall), with a trend line (dashed 
red) obtained by robust regression. Partial transparency was used to 
visualize regions of low vs. high point density. Overall, a strong 
correlation is visible (Pearson correlation coefficient 0.983). 
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um, conjunctiva, and water control samples with the Qiagen
Neasy PowerSoil Pro (QPS), Qiagen QiAamp DNA Micro-
iome Kit (QMK) and ZymoBIOMICS DNA Miniprep Kit
ZYMO). For each biospecimen, all aliquots were derived
rom the same biological sample. Additionally, to the short
ead MGI sequencing datasets, matched Oxford nanopore se-
uencing is available for saliva and bile samples. Full details
n experimental design may be found in the corresponding
anuscript ( 28 ). The dataset by Becker et al. ( 29 ) consists
f 140 stool samples and three cohorts, namely Parkinson’s
isease (PD), Parkinson’s Disease with a resistant starch in-
ervention (PD + RS), and the control cohort. The PD cohort
eceived dietary instructions, whereas the control and PD + RS
ohorts received resistant starch as a nutritional supplement.

easurements were taken at different timepoints. Full details
ay be found in the respective manuscript ( 29 ). 

esults and discussion 

he impact of the human microbiome on host health as me-
iated by various exogenous molecules like complex peptides
nd metabolites is well perceived ( 30 ,31 ). While extensive re-
earch is improving our understanding of the causal mecha-
isms linking microbiota and the immune system, disease as-
ociations with microbiome composition can provide valuable
nsight for clinicians ( 32 ,33 ). However, quantifying micro-
iome composition from metagenomic sequencing reads re-
ains time-consuming and computationally challenging. Re-

ent developments in the field of sketch-based taxonomic pro-
ling have resulted in an efficient solution for exchanging large
uantities of metagenomic sequencing data between client and
erver. By leveraging sourmash as a taxonomic profiling back-
one, we have developed Mibianto, an online solution for con-
enient microbiome composition analysis. We provide a wide
range of state-of-the-art downstream analyses with many cus-
tomization options, partially based on the microViz package.
The functionality includes assessment of different taxonomic
ranks, data filtering, diversity analysis, pathogen highlighting,
and more. We are aware of the workflow’s QC limitations
and have therefore provided several indicators to detect po-
tentially contaminated samples. 

Mibianto handles metagenomes from saliva, skin, 
plaque, stool and eye samples 

We aimed to rigorously evaluate the performance of Mibianto
across diverse experimental setups. A critical factor influenc-
ing metagenomic outcomes is the type of sample being an-
alyzed. Metagenomes derived from saliva, gut, dental plaque,
skin, or the eye exhibit significant variations in microbial com-
position, reflecting the unique microbiota habitats of these
biological sources. Moreover, the choice of DNA extraction
protocols can greatly impact the variability of results. Differ-
ent methodologies may preferentially extract certain micro-
bial groups, leading to variation in observed community struc-
tures. Therefore, comprehensive testing across these varying
conditions is crucial to ensure tool robustness and reliability
in accurately capturing and reflecting the intricate diversity
and dynamics of microbial communities. In the first dataset
by Rehner et al. we thus compare three different DNA extrac-
tion kits on seven different biospecimens, compiling a total of
30 data points ( 28 ). 

The assignment rates displayed by Mibianto are decreased
for the almost sterile samples of water and conjunctiva al-
ready suggesting lower quality of the samples (Figure 1 A). Fur-
ther, in saliva and bile samples, nanopore reads have lower as-
signment rates compared to their short-read counterpart. The
FracMinHash-embedding without Mibianto’s internal data
indicated QPS sputum as an outlier (Figure 1 B). We note that
the samples we describe here were already human-read de-
contaminated by Rehner et al., accordingly the samples did
not cluster with our selection of highly contaminated sam-
ples. Partially reconstructing the original analysis from the
manuscript with Mibianto on a species level, the highest num-
ber of observed species is found in the oral cavity in QMK
and ZYMO, which corroborates the findings of the origi-
nal manuscript (Figure 1 C). Water contamination is highest
with ZYMO. Principal coordinate analysis on Bray-Curtis dis-
tances of short reads clusters samples by biospecimen (Figure
1 D). Bile and stool cluster closely together. Following the deci-
sion in the original manuscript, we do not perform differential
abundance analysis due to the high number of confounding
variables and lack of replicates. 

Mibianto identifies significantly de-regulated gut 
microbiome species in Parkinson’s disease 

After testing its robust performance across various species
types and DNA extraction methods, we next evaluate Mib-
ianto’s efficacy in analysing case–control metagenomic stud-
ies. It is designed to facilitate the dissection of microbial vari-
ations between control and case groups, offering valuable
insights into microbial dynamics. In that aspect, we aim to
position Mibianto as a powerful tool for medical and life-
scientific researchers with an interest in understanding differ-
ences within microbiomes across diverse research settings. The
second dataset is a next-generation sequencing dataset of an
interventional cohort study on Parkinson’s disease by Becker
et al. ( 29 ). 
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Data exploration with Mibianto on the species level in-
dicates a high assignment rate with a few outliers. We
observed statistically significant differences in alpha diver-
sity before adjustment comparing PD + RS against PD
(Wilcoxon Mann–Whitney p -value ≈ 0.0306) and the control
( p -value ≈ 0.0002), yet no significant difference was observed
between PD and control ( p -value ≈ 0.3185) (Figure 2 A). Or-
dination analysis clusters control samples visibly closer to-
gether (Figure 2 B). Differential abundance analysis with AN-
COMBC and Benjamini–Hochberg p -value adjustment high-
lighted 33 and 17 OTUs as significant differentially abundant
among controls and PD + RS as well as controls and PD, re-
spectively. No significant differences were detected compar-
ing PD with PD + RS. We want to emphasize that the signif-
icance of all p -values mentioned in this section is artificially
inflated, because the samples are not statistically independent
due to the aggregation across timepoints. In both contrasts,
the most significant differentially abundant OTU was Fae-
calibacterium prausnitzii_C (Figure 2 C). F. prausnitzii is de-
scribed to have anti-inflammatory effects and is known to
be depleted in Parkinson’s disease patients ( 34 ,35 ). Further
it can produce butyrate, a short chain fatty acid, whose de-
creased concentration has been associated with depression in
Parkinson’s disease ( 36 ). By contrast, increased levels have
been shown to decrease motor deficits in the animal model
( 37 ). 

Mibianto compresses metagenomic data sets by a 

factor of up to 245 

An important aspect of Mibianto is to facilitate the online
analysis of larger studies by reducing the transferred data set
at the client side. From the previous studies we estimate how
many bytes are transferred from the user site to the server site
of Mibianto, after the k -mer spectra are generated on the lo-
cal computer. The data compression ratio was about 245:1,
resulting in a data size reduction of 99.59%. This enables the
user to analyze big data sets with minimal data upload. 

Enabling specific analyses using BusyBee Web 

While Mibianto excels at managing large-scale studies
through efficient data compression, it is recognized that cer-
tain in-depth analyses fall outside the scope. To address this,
we have seamlessly integrated Mibianto with our previously
developed BusyBee Web platform. BusyBee Web is tailored for
a distinct purpose: conducting extensive in-depth analyses of
a smaller number of metagenomic samples. Unlike Mibianto,
which operates on compressed data, BusyBee Web requires
a full upload of metagenomic datasets. This complementary
approach allows Mibianto to identify and propose a subset
of samples that warrant more detailed examination. Leverag-
ing both platforms in tandem enables researchers to navigate
from broader metagenomic surveys to focused, in-depth anal-
yses with ease and precision. To enable this feature, we auto-
matically display a list of ten samples with the overall highest
normalized abundance of potential pathogens to hint at an-
other in-depth analysis with BusyBee Web. 

Outlook: ultra-high processing performance for 
eukaryotic reads 

We evaluate the possibility to extend the concept of
Mibianto—namely to use k -mer spectra with a reduced size
for performing web-based analyses at client side – to human 

nucleic acid data sets. As one of the most frequent use-cases 
we considered gene expression profiling. To test this, we adapt 
the fast gapped k -mer counter hackgap ( 38 ), which is based on 

a 3-way bucketed cuckooo hash table ( 39 ). We only index k - 
mers that occur in a single gene, considering all transcripts of 
the gene. To process an RNA-seq sample, we count the occur- 
rences of each indexed k -mer in the sample. A robust average 
(trimmed mean) of the k -mer counts is a measure of the gene 
expression, if sufficient care is taken to account for inflated 

zero counts from k -mers belonging to transcripts that are not 
expressed at all in the sample. 

To evaluate whether k -mer count based expression values 
agree with established measures of expression (here, FPKM 

values computed by kallisto ( 40 )), we arbitrarily chose 10 

publicly available RNA-seq samples from the Gene Expres- 
sion Omnibus project ID GSE79362 (SRR3235783-87, 89–
90, 92–94) ( 41 ) and calculated gene expression measures 
based on both our robustly averaged k -mer counts and the 
standard kallisto FPKM values. Our results show overall a 
very good agreement on the reliably expressed genes (average 
k -mer count ≥ 1, at least 500 k -mer counts available) with a 
Pearson correlation coefficient of 0.983, and a slope of 0.99 

for the regression line (Figure 3 ). 
In the future, we intend to reduce the k -mer set to a mini- 

mal but representatively samples k -mer spectrum per gene. We 
aim to reliably estimate human gene expression from a small 
fraction of the initially available information, like Mibianto 

already accomplishes in the case of metagenomic data. 

Conclusion 

Mibianto is a web server that specializes in the compositional 
data analysis of metagenomic sequencing data. It distinguishes 
itself from existing online solutions by input flexibility, ease of 
use, and minimal connection requirements. This aspect is par- 
ticularly beneficial for large-scale case-control studies, as the 
web server streamlines the processing of hashed sequencing 
data and emphasizes pathogen identification. However, incor- 
porating functional analysis, de-novo assembly, genome min- 
ing, or any analysis requiring access to larger pieces of DNA 

sequence is currently not possible due to the specific design 

of our client-server data exchange model. Additionally, fur- 
ther research is required in the field of FracMinHash-based 

taxonomic profiling to refine results for nanopore sequenc- 
ing reads ( 42 ). Nonetheless, Mibianto already provides a wide 
range of features and functionalities that enable rapid insights 
into microbial communities with extensive result visualization 

and the ability to customize to individual workflows. Based 

on two previously published datasets, we demonstrated how 

our tool was able to confirm central findings in metagenomic 
experiments without the need for any deeper bioinformatics 
expertise. Mibianto was designed to serve as a valuable tool 
for researchers in metagenomics and related fields and we in- 
vite users to suggest additional desired features or ideas on our 
GitHub project page ( https:// github.com/ CCB-SB/ mibianto ). 

Data availability 

Mibianto is freely available without any login requirement at: 
https:// www.ccb.uni-saarland.de/ mibianto . 

https://github.com/CCB-SB/mibianto
https://www.ccb.uni-saarland.de/mibianto
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