
© DFKI - JK

System Qualities & Scenarios
(Non-functional Requirements)

Architectural Thinking for Intelligent Systems

Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

Agenda

 Importance of non-functional
requirements

 Making qualities measurable
with scenarios

Architectural Thinking for Intelligent Systems: System Qualities2

© DFKI - JK

Tutorial Assignment 5:

 We thoroughly vivisect the non-functional requirements for
our system,

 write scenarios to make them measurable and
 decide which non-functional requirements we put into the

focus of attention.

Architectural Thinking for Intelligent Systems: System Qualities3

© DFKI - JK Architectural Thinking for Intelligent Systems: System Qualities4

Wiegers/Beatty: Software Requirements, 3rd edition 2013

© DFKI - JK

System Qualities and Non-functional Requirements

 Functional requirements
– System functionality = system capabilities, services,

responsibilities & behavior
– «What does it offer to me, what can I do with it?»

 Non-functional requirements
– How system functionalities are fulfilled
– «How well does the system meet my needs?»
– «How well does it offer ist services to me»
– What decisions have already been taken (constraints)

Architectural Thinking for Intelligent Systems: System Qualities5

© DFKI - JK

Systems undergo change because maintenance or
portability is difficult, or because
performance, scalability, security, usability ... are
insufficient.

Functional enhancements come in 2nd place.

Architectural Thinking for Intelligent Systems: System Qualities6

© DFKI - JK

System Qualities determine System Architecture

Architectural Thinking for Intelligent Systems: System Qualities7

© DFKI - JK

Quality Attributes

 Measurable & testable!!!

 Quality attributes are fulfilled by an architecture by
anchoring specific structures with specific interactions and a
certain behavior in the architecture

 Functional requirements are met by transferring
responsibilities to specidic elements in the architecture

Architecture is not determined by functionality, but
only by system qualities!

Architectural Thinking for Intelligent Systems: System Qualities8

© DFKI - JK

2 Relevant Groups of Quality Attributes

 Qualities of the system at runtime = observable behavior
– Availability
– Performance
– Usability
– Interoperability
– Security

 Qualities of the system at development time
– Modifiability
– Testability
– Reusability

Architectural Thinking for Intelligent Systems: System Qualities9

© DFKI - JK

Quality Attributes are not Independent of each Other

 Quality can only be measured indirectly, not absolutely
 Quality is relative and different for different stakeholders
 Quality of architecture <> Quality of software
 A complete implementation of the functional requirements

does not allow statements to be made about the quality
achieved

 Quality attributes are at the heart of architectural thinking
Need to make compromises in decisions
 "Trade-offs"

Architectural Thinking for Intelligent Systems: System Qualities10

© DFKI - JK

How can we describe Quality Attribute Requirements?

"Scenario"
 What happens when a stimulus affects a system in a

certain situation?

Architectural Thinking for Intelligent Systems: System Qualities11

Stimulus
Source

Stimulus

System

Response
Response
Measure

Environment
Artifact

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities12

Part of the Scenario Description

Stimulus source Car information system

Stimulus Message regarding the current position

Environment Traffic Monitoring system (+ located vehicles)

Artifact Message receiver (sensor) of the traffic
monitoring system

Response Current position transmitted from sensor to
traffic monitoring server

Response measure 99.99% of all captured positions reach the
server

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities13

Part of the scenario Description

Stimulus source Komax technician

Stimulus Desire for visualization of constraints between 2
housings

Environment Topwin Software

Artifact AI System GUI

Response Display of all constraints

Response metrics With only 2 clicks in 2 scrollable windows

© DFKI - JK

How can we Analyze Quality Attributes?

1. Consult the sources of the request and further break down
the attribute – «what exactly is meant?»
– Collect concrete scenarios for the attribute
– Analyzing the collected stimuli, responses, measures –

what is the essential core of the attribute?

2. Find tactics and patterns that support the quality attribute
– How can the required responses be achieved?
– What can cause a system fail to achieve the attribute and

which system structures can prevent the failure?

Architectural Thinking for Intelligent Systems: System Qualities14

© DFKI - JK

Environment & Artifact

 Environment: In which context, under which circumstances
and boundary conditions does a stimulus occur?
– e.g. modification request before or after “code freeze”

 Artifact: Part of the system that must fulfill the attribute
– GUI, database, but often the whole system as well

Architectural Thinking for Intelligent Systems: System Qualities15

System

© DFKI - JK

Specification of Scenarios

1. Stimulus source
2. Stimulus
3. Environment
4. Artifact
5. Response
6. Response measure

 Scenarios make non-functional requirements (the quality
attributes) SMART

 It often requires more than one scenario per non-functional
requirement

Architectural Thinking for Intelligent Systems: System Qualities16

© DFKI - JK

Scenario Pattern for Usability

Architectural Thinking for Intelligent Systems: System Qualities17

Part of the Scenario Description

Stimulus source Stakeholder (user, architect, developer,...)

Stimulus Stimulus source tries to:
- learn how to use the system efficiently and correctly
- understand the operating or usage concepts of the system
- minimize the effects of operating errors
- adapt system to own needs (configure)
- understand system and software architecture

Environment Normal operation, runtime, installation or configuration time

Artifact Complete system (including user interface, control flow, architecture
documentation)

Response - System supports by examples or explanations
- Incorrect operation has local/overlapping effects
- System (part) is not configurable
- System and software architecture with underlying concepts is not

documented

Response measure - Time spent, number of errors, number of user goals/tasks achieved, user
satisfaction, increase in knowledge, ratio of successful uses to total uses,
proportion of errors occurring

- Extent of damaged data, loss of time, abortion of interactions

© DFKI - JK

The most important System-Independent Quality Attributes

Architectural Thinking for Intelligent Systems: System Qualities18

© DFKI - JK

Availability (availability/reliability)

 Functionalities are available and usable when needed

 Which errors occur (internal, external)? How often? What
response do they trigger? How are they prevented? How
are they noticed, communicated, and corrected? How long
is the system or artifact "down"?

Architectural Thinking for Intelligent Systems: System Qualities19

"Ninety percent of life is just showing up." Woody Allen

Stability
Reliability

Ability to avoid failure or to restore
functionality after failure within a
specified period of time

+

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities20

© DFKI - JK

Scenario Pattern for Availability

Architectural Thinking for Intelligent Systems: System Qualities21

Part of the scenario Value

Source Internal/external: people, hardware, software, physical infrastructure, physical
environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Environment Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Artifact Processors, communication channels, persistent storage, processes

Response - Prevent the fault from becoming a failure (breakdown of system parts)
- Detect the fault: logging, notifications (people, system)
- Recover from the fault: disable source of events causing the fault, be

temporarily unavailable while repair is being effected, fix or mask the
fault/failure or contain the damage it causes, operate in a degraded mode
while repair is being effected

Response measure - Time or time interval when system must be available, availability percentage
- Time to detect/repair the fault, time in degraded mode …
- Number or percentage of faults the system can detect, prevent, handle

without failing

© DFKI - JK

Types of Errors (possible Stimuli)

 Omission
– no response to a stimulus

 Crash
– Omissions that occur repeatedly

 Timing
– Response occurs at the wrong time (too early, too late)

 Response
– Incorrect response of the system

Architectural Thinking for Intelligent Systems: System Qualities22

© DFKI - JK

Responses

 Prevention
– Add redundancy, safety functions, load balancing to

system architecture

 Detection & Isolation
– Logging of the error

 Recovery
– Notify users and other systems
– Start actions to limit potential damage
– Limit availability or functionality of the affected system

(parts)
Architectural Thinking for Intelligent Systems: System Qualities23

© DFKI - JK

Interoperability

 Degree to which two or more systems can exchange
information in a meaningful way
– syntactic data exchange (interfaces)
– semantic data interpretation

 With whom? With what? Under what conditions?

Architectural Thinking for Intelligent Systems: System Qualities24

Entrance
to city &
time

Traffic
Monitoring
System

Roadpricing
in city X

99.99% of all
invoices are correct

My car
Env: system known

© DFKI - JK

Modifiability / Extensibility

 Degree to which a stakeholder is able to make changes in
the system
– What can change?
– How likely is a change?
– When does a change happen and by whom?
– What will it cost? What is the risk?

Architectural Thinking for Intelligent Systems: System Qualities25

User

GUI
change

" tile surface"

Delete tile or
add new one

< 1 second

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities26

© DFKI - JK

Performance

 System reaction in a certain time to a certain event
– often associated with scalability requirements

 Events occur periodically, stochastically, sporadically
 Measurement of Response

– latency: time between event occurrence and system
reaction

– deadlines, throughput (transactions/s), jitter (latency
variance, number of unprocessed events)

Architectural Thinking for Intelligent Systems: System Qualities27

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities28

© DFKI - JK

Scenario Pattern for Performance

Architectural Thinking for Intelligent Systems: System Qualities29

Part of the scenario Description
Stimulus source internal or external

Stimulus Occurrence of the stimulus (periodic, stochastic, random)

Environment Normal operation, high load, overload, emergency operation

Artifact Complete system (or certain parts: servers, databases)

Response - Processing the event (execution behavior)
- Change in execution behavior (complete vs. partial processing)
- Restricted use of functions, data, etc.
- Change in runtime behavior/resource usage by the system

Response measure - Latency, response time, throughput
- Error rates, amount of lost data or no longer available functions
- Fluctuations in loads and response times
- Use specific quantities and durations/time points!

© DFKI - JK

Security

 Ability of a system
– to protect data and information from unauthorized

access, but allow authorized access by users (and other
systems)

– to ensure information integrity (protect against
unauthorized manipulation)

– to be available for legitimate use
– to recognize, resist, respond to and recover from attacks

 Example: "Denial of service" attack does not prevent that
books can be ordered in an online shop

Architectural Thinking for Intelligent Systems: System Qualities30

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities31

© DFKI - JK

Testability

 How easy (or difficult) is it to detect (and locate) errors in the
system?

 «A system is testable, if it gives up its faults easily»

 Source: unit tester
 Stimulus: code unit completed
 Artifact: code unit
 Environment: development
 response: written & executed tests with results
 measure: 85% path coverage in 3 hours

Architectural Thinking for Intelligent Systems: System Qualities32

© DFKI - JK

Usability

 How easy is it for the user to use the system?
 What support does the user receive?

 Learning to use a new system, «self-explaining»
 Adequate information visualization
 Effects of erroneous user behavior

– Adaptability of the system to the user
– Confidence and satisfaction of the user

 «App x can be used to <x> within 1 minute after download»

Architectural Thinking for Intelligent Systems: System Qualities33

© DFKI - JK

Example

Architectural Thinking for Intelligent Systems: System Qualities34

© DFKI - JK

More Quality Attributes

 Portability
 Scalability
 Mobility
 Controllability
 Safety (Can input from one user become a danger to

others?)

 Conceptual integrity of the architecture
 Marketability

Architectural Thinking for Intelligent Systems: System Qualities35

© DFKI - JK

Example

 Quality attributes in destination control
– Usability: what happens when transportation capacity is

exceeded?
– Portability: how to adapt to different buildings and users?
– Performance: what to optimize?

 Quality attributes in cable wiring control software
– Usability: ease of applying the software
– Scalability: how many cables can the solver handle?

Architectural Thinking for Intelligent Systems: System Qualities36

© DFKI - JK

Quality Characteristics in ISO/IEC 25010:2011
(Reviewed and confirmed in 2017)

Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System
and software quality models

Architectural Thinking for Intelligent Systems: System Qualities37

© DFKI - JK

Summary

 Non-functional requirements (system qualities) define the
architecture!

 Put the 2 most important quality attributes in the focus of
architectural thinking

 Use scenarios to make qualities measurable
 Writing good scenarios takes time and requires a detailed

analysis and understanding of stimulus source, stimulus,
environment, artifact, response and measure

 Scenario patterns provide helpful guidance
 Write more than one (many!) scenarios for each quality

attribute

Architectural Thinking for Intelligent Systems: System Qualities38

© DFKI - JK

Working Questions

1. What role do non-functional requirements and quality
attributes play in architectural thinking?

2. Give examples of quality attributes.
3. How do you describe a quality attribute using scenarios?
4. What is the relationship between a quality attribute and a

use case? How would you add information about a quality
attribute in a use case description?

Architectural Thinking for Intelligent Systems: System Qualities39

	System Qualities & Scenarios�(Non-functional Requirements)
	Agenda
	Tutorial Assignment 5:
	Foliennummer 4
	System Qualities and Non-functional Requirements
	Systems undergo change because maintenance or portability is difficult, or because�performance, scalability, security, usability ... are insufficient. ��Functional enhancements come in 2nd place.�
	System Qualities determine System Architecture
	Quality Attributes
	2 Relevant Groups of Quality Attributes
	Quality Attributes are not Independent of each Other
	How can we describe Quality Attribute Requirements?
	Example
	Example
	How can we Analyze Quality Attributes?
	Environment & Artifact
	Specification of Scenarios
	Scenario Pattern for Usability
	The most important System-Independent Quality Attributes
	Availability (availability/reliability)
	Example
	Scenario Pattern for Availability
	Types of Errors (possible Stimuli)
	Responses
	Interoperability
	Modifiability / Extensibility
	Example
	Performance
	Example
	Scenario Pattern for Performance
	Security
	Example
	Testability
	Usability
	Example
	More Quality Attributes
	Example
	Quality Characteristics in ISO/IEC 25010:2011 �(Reviewed and confirmed in 2017)
	Summary
	Working Questions

