OJO) UNIVERSITAT @ 'm

“"Huu"“" DES
by Aue A
SAARLANDES {wen Cortie 7

System Functionality

Architectural Thinking for Intelligent Systems
Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

UMIVERSITAT
DES -
SAARLAMDES = L

Agenda

= Functional requirements from an architectural perspective
— The importance of negotiation

User stories vs. use cases

Techniques for writing good user stories & use cases

Defining goal hierarchies

Measurable acceptance criteria

2 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT f
DES ?
SAARLAMDES = k

Tutorial Assignment 4:

= We dive deeper into the functional requirements our system
has to meet and formulate user stories and use cases.

= We analyze functional dependencies by creating a goal
hierarchy.

= Remember to make your requirements SMART.

3 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Two established Methods to capture Functional
Requirements

USER STORIES ~
APPLIED

" U S e r Sto r I e S FOR AGILE SOFTWARE

DEVELOPMENT

Mike CoHN
Foreword by Kent Beck

Writing Effective
Use Cafes

= Use cases

Alistair Cockburn

Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

UMIVERSITAT
DES
SAARLAMDES

User Stories Revisited

AGILE - SCRUM

I CANT GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION.

scottadams@aol.com

www.dilbert.com

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
"USER STORY .

)

rFIbl|03 £ 2002 United Feature Syndicate, Inc.

OKAY,HERE'S A
STORY : YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIN YOUR LIFE.

https://agileinpills.wordpress.com/2013/07/18/learning-by-teaching-user-stories/

Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

UMIVERSITAT
DES
SAARLAMDES |-

What is a User Story? In comparison to a Use Case?

If’s often best to think of the written part as a pointer to the real requirement.

http://www.mountaingoatsoftware.com/agile/user-stories

My one liner 1S that a story is a promise to have a conversation and a
use case Is the record oi the conversation. If you think you need one.
Jim Standley

A Use Case IS a way oi describing requirements. i
A User Story Is a way oi prioritizing work. Tim Wright

& JE | “.'l'r | :
b AL O e

User Story is simply, a user’s story. It is business people’s version of describing the world, their way of
“starfing an idea” basically starting a conversation (requirements elicitation) oi whether their idea (to
gel some business beneiii) is ieasible.

http://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo

6 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Agile Enterprise Backlog Model

Optionally

' |) Sloborated by | i Constrained By | Nonfunctional
(Use Case <)~ 1+ Backlog Iltem —— = —l SE—

A Campliant l L

when posses 0.*
Is one of =
System Qualities
Tests
lmllnent Realized by) Realized by ‘-J Realized by implemented h.'l"-_
‘ Theme 0,1 e Licature Lestery oo g
1 AN
; . . is pne gi | ﬁ:‘r‘; Is ane of
Business Architecture passes ———
2 Epic | 1 User Story | ‘Mnm;:m
[M] T h _1_|
Feature
| Acceptance Test Done when passes
Source: Agile Software Requirements; Lean Requirements L.* 0.
Practices for Teams, Programs, and the Enterprise.
Copyright 2010, Leffingwell, LLC. Story Unit Test |
See www.scalingsoftwareagility wordpress.com Acceptance Test

7 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES = ¢
SAARLANDES A

Epic vs. User Story

As a user, I can backup my entire hard drive.

Because an epic is generally too large for an agile team to
complete in one iteration, it is split into multiple smaller user
stories before it is worked on.

The epic above could be split into dozens (or possibly hundreds),
iIncluding these two:

As a power user, I can speciiy iiles or folders to backup based on file size,
date created and date modiiied.

As a user, I can indicate iolders not to backup so that my backup drive isn't
iilled up with things I don't need saved.

http://www.mountaingoatsoftware.com/agile/user-stories

8 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Good User Stories

“As a[role] | can [function] so that [rationale].”

As a student, | can find my grades online so that | don’t have to wait until
the next day to know whether | passed.

Bill Wake's INVEST acronym

Independent We want to be able to develop in any sequence.

Negotiable Avoid too much detail; keep them flexible so the team can
adjust how much of the story to implement.

Valuable Users or customers get some value from the story.

Estimatable The team must be able to use them for planning.

Small Large stories are harder to estimate and plan. By the time of

iteration planning, the story should be able to be designed,
coded, and tested within the iteration.

Testable Document acceptance criteria, or the definition of done for
the story, which lead to test cases.

https://help.rallydev.com/writing-great-user-story

9 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Definition in an Incremental 3-Step Process

= Brief description of the need

= Conversations to solidify the details (happening during
backlog grooming and iteration planning)

= Tests that confirm the story's satisfactory completion

= Acceptance criteria = Definition of Done for the story

1. Product owner should list as many as possible to clarify the intent
of the story

2. Team should have a conversation about them and adjust the
acceptance criteria - capture the critical details in acceptance
criteria

3. Once an iteration has begun, testers can formalize acceptance
criteria into acceptance tests

https://help.rallydev.com/writing-great-user-story

10 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT 1
DES
SAARLAMDES = l

Frequent Mistakes when defining Acceptance Criteria

= One-sided and incomplete exploration
— Acceptance is only looked at from one angle
— If possible, consider all facets of acceptance

— System quality for the user: efficient, simple, intuitive, informative,
flexible

= Discuss, discuss, discuss ...
— What are the really critical features for the user?
— How do we make them measurable?

= The acceptance test forgets the user
— Too much focus on technical system details
— Customer needs are not taken seriously
— Measurability remains vague

11 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

»x

Exercise: Which criteria are violated in these “user

stories” ?

1) “Design brochure layout.”

2) “Write game rules.”

3) “I want the brochure to be colorful.”

4) “As Product Owner, | want a list of highly-
rated restaurants on the brochure.”

5) “Play test the game.”

12 Architectural Thinking for Intelligent Systems: System Functionality

- ;a2 m| = =

Independent
Negotiable

Valuable

Estimatable

Scalable (small sized)

Testable

© DFKI-JK

UMIVERSITAT 7
DES
SAARLAMDES - L

“*As Product Owner, | want a list of highly-rated restaurants
on the brochure.”

= Drawbacks: It’s not only about you!

= Better: Focus on your end users and stakeholders. “As a
gourmet tourist, | want a list of highly-rated restaurants on
the brochure.”

= Better: “As the Chicago Public Health Department, | want
warnings about restaurants that serve raw ingredients so
that tourists don’t get sick on our dime.”

13 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

“I want the brochure to be colorful.”

= Drawbacks: not Independent, not Estimable (without
knowing other features of brochure), not Small.

— This Is an easy trap for those of us who grew up with the
habit of writing “the JFIDM _shall comply with the IEEE-
488 interface specification.”

= Better: Use “colorful” and other cross-cutting requirements
as acceptance criteria on each of the specific features in the
backlog they apply to.

14 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

sl

UMIVERSITAT
DES -
SAARLANDES A

“Design brochure layout.”

15

Drawbacks: not Independent, no business Value. This is a
task representing a horizontal architectural layer or phase.
The architecture will be done in a vacuum, possibly
contributing to analysis paralysis.

Better: “As a dog owner, | can find a meal schedule on the

brochure so | know whether this doggy day care center Is

appropriate for my hungry dog.”

— This will lead to only the necessary amount of design to
support this Sprint’s features. The layout might change
the next Sprint, but rework is cheaper than no work.

Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT 1
DES ?
SAARLAMDES = l

“Write game rules.”

= Drawbacks: not Independent, no business Value, not Small.

= Better: “As a newbie game player, | want to know who goes
first so we can start the game.”

= Better: “As a competitive gamer, | want a way to leapfrog my
opposing players.”

16 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLANDES - k

“Play test the game.”

= Drawbacks: Not Independent. Encourages phasewise
development.

= Better: Make testing, refactoring, etc. a default acceptance
criteria on every Product Backlog Item.

— But: If you failed to fully test and refactor in previous Sprints, you are
In technical debt! You are already working on a legacy product. In
this case you may need to make testing and refactoring first-class
Product Backlog Items to make up for your sins. This practice is
controversial, and technical debt repayment cannot honestly be
called a User Story. A PBI that’s not a User Story may still be useful
as a starting point for a conversation about how to reduce technical
debt incrementally while continuing to deliver new value.

17 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT 7
DES
SAARLAMDES a l

Exercise: Let us define some Acceptance Criteria

= A bank customer can change his PIN.
— Acceptance Criteria:

= As astudent, | can find my grades online so that I don’t have to
wait until the next day to know whether | passed.

— Acceptance Criteria:

= As abook shopper, | can read reviews of a selected book to help
me decide whether to buy it.

— Acceptance Criteria:

= As an author, | want the spell checker to ignore words with
numbers so that only truly misspelled words are indicated.

— Acceptance Criteria:

http://blogs.collab.net/agile/user-story-examples-and-counterexamples

18 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

sl

UMIVERSITAT
DES
SAARLANDES - k

Exercise: High or low Level of Detail?

As a <user type>, | want to <function> so that <benefit> .

1)
2)

3)
4)

o)

6)
7)

8)

19

As a consumer, | want the shopping cart functionality to easily purchase
items online.

As an executive, | want to generate a report to understand which
departments need to improve their productivity.

A team member can view the iteration status.

A team member can view a table of stories with rank, name, size,
package, owner, and status.

A team member can click a red button to expand the table to include
detail, which lists all the tasks, with rank, name, estimate, owner, status.

A team member can view the iteration's stories and their status.

A team member can view the current burndown chart on the status page,
and can click it for a larger view.

A team member can edit a task from the iteration status page.

Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES .
SAARLAMDES -

The Crystal Series for Software Developers
Alistair Cockburn, Series Editor

Writing Effective
Use Cages

Writing Effective Use Cases

Alistair Cockburn

20 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

@ gEiRLANDES i - kl
Use Cases reduce Decision Space

Welcome to the realm of use cases. Systems folks will have to
analyze and carry out “thought experiments” and conceive
how their system should precisely work in order to realize the
agreed story.

Use cases are a very effective tool to do that.

So fundamentally given a concrete system definition, finite
actors and business logic rules that do not contradict
computation theory, there is a finite (but large) set of
possibilities that can occur and they group together as
scenarios and use cases.

Use cases are something really fundamental, but only when

considered from a modeling perspective.
Nikhil Shah

http://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo

21 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

=

A possible
Use Case
Template

22

Attribute

Description

Short description / goal
of the Use Case

Descriptive text of just a few sentences outlining the main purpose of
the use case.

Actor(s)

See section 2.3 for possible actors

Preconditions

Conditions that must be fulfilled in order to perform the use case.
Example:

{ The user is authorized }
AND
{ Client Profile is available }

Basic flow

Describes the main control flow of the use case. Example:

1. The user selects the ice cream’s flavour from one of {chocolate,
vanilla, strawberry}.

2. The system indicates the price of one portion of the desired ice
cream.

3. The user inserts coins up to the amount indicated by the system.
4.

Alternative flow 1

Describes the first alternative flow. Example:
Steps 1 through 2 as in the basic flow.
3. The user cancels the action.

Alternative flow n

Describes the n alternative flow.

Postconditions

Assertions that hold true after the use case has heen performed.

Use Case-specific
non-functional
requirements

Example: This use case must support up to 20 users concurrently.

Special considerations

E. g. restrictions on the data to be entered.

Creation date

Format: DD.MM.YYYY

Modification

Version history; format:
DD.MM.YYYY Description of the change(s)

Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

UMIVERSITAT
DES
SAARLAMDES

«An Actor with a goal calls on the responsibilities of
another»

Primary Actor System under design Secondary Actor
person or system could be any system other system against
with goal for SuD which SuD has a goal

ROV DA
Responsibility - j L

- Goal 1 -
(Interaction 1)
- Goal 2

..actton 1l A . :
U " Responsibility #,(Interactmn 2)
- Goal 1 |'
: action 1—0 » Responsibility
- backup goal N
for Goal 2 SuD - system under discussion

Cockburn, S. 24

23 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES ak
SAARLANDES A

Goal Hierarchies

= "] want this sales contract. To do that | have to take this
manager out to lunch. To do that | have to get some cash.
To do that | have to withdraw money from this ATM. To do
that | have to get it to accept my identity. To do that | have to
get it to read my ATM card. To do that | have to find the card
slot."”

= "I want to find the tab key so | can get the cursor into the
address field, so | can put in my address, so | can get my
personal information into this quote software, so | can get a
guote, so | can buy a car insurance policy, so | can get my
car licensed, so | can drive.”

Cockburn, S. 61

24 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES .
SAARLAMDES -

The use case goal 1s higher level than the
steps. They sit on a gradient.

Goal of use case

Goal of steps (white)

Goal af uxe cgsen

(roal af steps

{ﬁﬂf’ HSE’J" gﬂt‘ﬂ(’k

(indigo)
(black)

Cockburn, S. 69

25 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES i
SAARLAMDES -

3 main Levels of Goals: White — Blue — Indigo

overall project {:;1
Summary g
/R J “white”
: A Goals
advertise order mvoice)L
\ '
. T) “blue”
A Set 11P \ 1eferen.ce \ 1110111‘[(.)1 Al place B .c1ea.te y .seu.d L [ISEI'
promotion promotion promotion order mvoice || invoice
- . Goals

\ ~
identify register identify identify Subfunctions
promotion user product customer

Cockburn, S. 62

26 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES '

Use Case Example on Level «White»

Use Case 18 fif Operate an Insurance Policy+ O

Primary Actor: The customer

Scope: The insurance company (“MylnsCo")
Level: Summary (“white")

Steps:

1. Customer gets a quote for a policy.

2. Customer buys a policy.

3. Customer makes a claim against the policy.
4. Customer closes the policy.

27 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

«White» vs. «Blue»

Use Case 6 fit Add New Service (Enterprise) .~

Primary Actor: Customer

Scope: MyTelCo

Level: Summary

1. Customer calls MyTelCo, requests new service . . .
2. MyTelCo delivers . . . etc. ...

Use Case 7 (7 Add New Service (Acura) -4

Primary Actor: Clerk for external customer

Scope: Acura

Level: User goal

1. Customer calls in, clerk discusses request with customer.

2. Clerk finds customer in Acura.

3. Acura presents customer’s current service package . . . etc. .

28 Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

DES

UMIVERSITAT

SAARLANDES

Use Case Example on Level «Blue»

29

Use Case 13 ("W Serialize Access to a Resource

A

Primary Actor: Service Client object
Scope: Concurrency Service Framework (CSF)
Level: User goal

1.
L.

S
4.

5.

Main Success Scenario:

Service Client asks a Resource Lock to give it specified access.

The Resource Lock returns control to the Service Client so that it may use the
Resource.

Service Client uses the Resource.
Service Client informs the Resource Lock that it is finished with the Resource.
Resource Lock cleans up after the Service Client.

Extensions:

2a.

2cC.

Resource Lock finds that Service Client already has access to the resource:

2a1. Resource Lock applies a lock conversion policy (Use Case 14) to the request.
2b.

Resource Lock finds that the resource is already in use:

2b1. The Resource Lock applies a compatibility policy (Use Case 15) to grant ac-
cess to the Service Client.

Resource Locking Holding time limit is nonzero:
2c1. Resource Lock starts the holding timer.

Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

UNIVERSITAT i
DES
SAARLANDES

Use Case Example on Level «Indigo»

Use Case 14 ("W Apply a Lock Conversion Policy X

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
Resource Lock verifies that request is for exclusive access.
Resource Lock verifies that Service Client already has shared access.
Resource Lock verifies that there is no Service Client waiting to upgrade access.
Resource Lock verifies that there are no other Service Clients sha ring the resource.
Resource Lock grants Service Client exclusive access to the resource.
Resource Lock increments Service Client lock count.
Extensions:
1a. Resource Lock finds that the request is for shared access:
Tal. Resource Lock increments lock count on Service Client.
Ta2. Success!
2a. Resource Lock finds that the Service Client alrea dy has exclusive access:
2al. Resource Lock increments lock count on Service Client.
2a2. Success!

oUAwN

30 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT

DES
SAARLANDES

Notation
Icons
Design Scope Goal Level
& Organization (black-box) (> Very high summary
o Organization (white-box) A Summary
T System (black box) A User-goal
(7 System (white box) X Subfunction
(i Component & Too low

For Goal Level, alternatively, append one of these characters to the use case name:
Append “+” to summary use case names.
Append “!” or nothing to user-goal use case names.
Append “-” to subfunction use case names.

31 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

sl

UMIVERSITAT

DES

SAARLANDES

How to Identify Use Cases?

32

L.

Name the system scope and boundaries.
Track changes to this initial context diagram with the infout list.

. Brainstorm and list the primary actors.

Find every human and non-human primary actor, over the life
of the system.

. Brainstorm and exhaustively list user goals for the system.

The initial Actor-Goal List is now available.

. Capture the outermost summary use cases to see who really cares.

Check for an outermost use case for each primary actor.

Reconsider and revise the summary use cases. Add, subtract, or
merge goals.

Double-check for time-based triggers and other events at the
system boundary.

. Select one use case to expand.

Consider writing a narrative fo learn the material.

Architectural Thinking for Intelligent Systems: System Functionality

© DFKI-JK

UNIVERSITAT ,
DES ‘
SAARLANDES

7.

10.

11.

12,

33

Capture stakeholders and interests, preconditions and guarantees.
The system will ensure the preconditions and guarantee the interests.

. Write the main success scenario (MSS).

Use 3 to 9 steps to meet all interests and guarantees.

. Brainstorm and exhaustively list the extension conditions.

Include all that the system can detect and must handle.

Write the extension-handling steps.
Each will end back in the MSS, at a separate success exit, or in failure.

Extract complex flows to sub use cases; merge trivial sub use cases.
Extracting a sub use case is easy, but it adds cost to the project.

Readjust the set: add, subtract, merge, as needed.

Check for readability, completeness, and meeting stakeholders’
Interests.

Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT

DES
SAARLANDES

Use Case: Login

Exercise: This use case describes the process by which users log in to the order-processing sys-
. tem. It also sets up access permissions for various categories of users.
Lo g In Use Flow of Events:

Case Basic Path:

1. The use case starts when the user starts the application.

2. The system will display the Login screen.
3. The user enters a username and password.
vour new 4. Th tem will verify the informatio
colleague 5. The syste W!” : y the info 5 ion.
sends you the 6. The system w!” s;e alcces:‘ pi/rln"!lssmns.
Use Case . Hie system.vw Isp afy t e‘ ain screen.
Login for 7. The. user will select a function. |
evaluation. 8. While the user does not select Exit loop
Give hi 9. If the user selects Place Order, Use Place Order.
¢ Ivgb mll(q 10. If the user selects Return Product, Use Return Product.
ee a? an 11. If the user selects Cancel Order, Use Cancel Order.
corrections.

12. If the user selects Get Status on Order, Use Get Status.

13. If the user selects Send Catalog, Use Send Catalog.

14. If the user selects Register Complaint, Use Register Complaint.
15. If the user selects Run Sales Report, Use Run Sales Report.

end if

16. The user will select a function.

end loop

34 17. The use case ends.

UMIVERSITAT 7
DES
SAARLAMDES a l

Exercise: Cash withdrawals from ATMs

1. Develop a goal hierarchy and define 3 use cases at the
levels "white-blue-indigo".

2. What are the major errors when doing a cash withdrawal at
an ATM considered at level "blue" ?

3. Define possible acceptance criteria and tests for the goals
and use cases defined above.

35 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

How to Proceed (Cockburn, p. 90 ff.)

= Use Simply formulated sentences to describe active actions
— Subject — verb — object: The System deducts the amount from the ...

= Subject = «Who is on it?»
What is the turn of the subject? How does it transfer control to another subject?
or Finish the job and «clean up the dirt"

= Take bird's eye view - not a system’s view
— Bad: ,Get ATM card and pin number*
— Good: ,The customer puts in the ATM Card and PIN*

= Goals correspond to intentions

— Bad: ,System asks for name. User enters name..."
— Good: ,User enters name and address (to specify delivery address)*

= Demonstrate how the process is progressing towards the
goal of the use case.

36 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES |
SAARLAMDES F

How to Proceed (continued)

= Make the purpose of validations clear

— Bad: ,,System checks the password. If ... then ... else.”
— Good: ,The system verifies that the password is correct.”

= Describe repeating and branching activities precisely (do not
use pseudo code)

3a. POIdiing Timer expires before the Client informs the Resource Lock that it is
inished:

3al. Resource Lock sends an Exception to the Client's process.
3a2. Faill
4a. Resource Lock finds nonzero lock count on Service Client:
4a1. Resource Lock decrements the reference count of the request.
4a2. Success!
5a. Resource Lock finds that the resource is currently not in use:

5al. Resource Lock applies an access selection policy (Use Case 16) to grant
access to any suspended service clients.

5b. Holding Timer is still running:
5b1. Resource Lock cancels Holding Timer.

37 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT

DES
SAARLANDES

Best Practices

Write something readable.

Casual, readable use cases are still useful, whereas unreadable use cases
won't get read.

Work breadth-first, from lower precision to higher precision.

Precision Level 1: Primary actor’s name and goal

Precision Level 2: The use case brief, or the main success scenario
Precision Level 3: The extension conditions

Precision Level 4: The extension handling steps

For each step:

Show a goal succeeding.
Capture the actor’s intention, not the user interface details.
Have an actor pass information, validate a condition, or update stafe.

Write between-step commentary to indicate step sequencing (or lack of).
Ask “why” to find a next-higher level goal.

For data descriptions (only put Precision Level 1 into the use case text):
Precision Level 1: Data nickname
Precision Level 2: Data fields associated with the nickname
Precision Level 3: Field types, lengths, and validations

38 © DFKI-JK

UNIVERSITAT ,
DES ‘
SAARLANDES

When will we have captured all use cases?

+ You have named all the primary actors and all the user goals with respect to the
system.

+ You have captured all frigger conditions to the system either as use case triggers
or as extension conditions.

¢ You have written all the user-goal use cases, along with the summary and sub-
function use cases needed to support them.

+ Each use case is written clearly enough that
— The sponsors agree that they will be able to tell whether or not it is actually
delivered.
— The users agree that it is what they want or can accept as the system’s behavior.
— The developers agree that they can actually develop that functionality.

+ The sponsors agree that the use case set covers all they want (for now).

39 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES - L

Consistency of User Story and Use Case

Use Case: Titel

Description : Summary in one sentence

Level: High Level Summary, Summary, User Goal, As a [role]
Sub-Function, Low Level

Main Actuator: Actuator | can [function]

Preconditions: Preconditions so that [rationale]

Postconditions: Postconditions (Success, Minimal)

Main scenario + Acceptance Criteria

1. Describe Step 1
2. Describe Step 2

Alternative Scenarios

40 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

UMIVERSITAT

DES -
SAARLANDES A

Summary

= Use cases and user stories address different aspects of the
system (how vs. what/why)

= Focus on uniform terminology, make yourself aware of

levels of abstraction and write uniformly within and across
levels

— Goal hierarchies make levels explicit and help to sort the
set of use cases

= Precisely formulate use cases and use stories and if both
are used, align them correctly with each other

— Make them SMART
— Formulate measurable acceptance criteria

41 Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

sl

UMIVERSITAT
DES -
SAARLANDES - \

Working Questions

42

1.
2.

By which means can we capture requirements?

What is your personal stake on the relationship
between user stories and use cases?

What helps in finding the right level of
detail/abstraction in a user story?

Why are measurable acceptance criteria so
Important when using user stories?

Why should use cases be formulated at different
levels of detail? Which levels are useful?

How are goals and steps related in a use case?

Architectural Thinking for Intelligent Systems: System Functionality © DFKI - JK

	System Functionality
	Agenda
	Tutorial Assignment 4:
	Two established Methods to capture Functional Requirements
	User Stories Revisited
	What is a User Story? In comparison to a Use Case?
	Foliennummer 7
	Epic vs. User Story
	Good User Stories
	Definition in an Incremental 3-Step Process
	Frequent Mistakes when defining Acceptance Criteria
	Exercise: Which criteria are violated in these “user stories”?
	“As Product Owner, I want a list of highly-rated restaurants on the brochure.” �
	“I want the brochure to be colorful.”
	“Design brochure layout.”
	“Write game rules.”
	“Play test the game.”
	Exercise: Let us define some Acceptance Criteria
	Exercise: High or low Level of Detail?
	Writing Effective Use Cases
	Use Cases reduce Decision Space
	A possible Use Case Template
	«An Actor with a goal calls on the responsibilities of another»�
	Goal Hierarchies
	Foliennummer 25
	3 main Levels of Goals: White – Blue – Indigo
	Use Case Example on Level «White»
	«White» vs. «Blue»
	Use Case Example on Level «Blue»
	Use Case Example on Level «Indigo»
	Notation
	How to Identify Use Cases?
	Foliennummer 33
	Exercise: Login Use Case
	Exercise: Cash withdrawals from ATMs
	How to Proceed (Cockburn, p. 90 ff.)
	How to Proceed (continued)
	Best Practices
	When will we have captured all use cases?
	Consistency of User Story and Use Case
	Summary
	Working Questions

