
© DFKI - JK

System Functionality

Architectural Thinking for Intelligent Systems

Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

Agenda

 Functional requirements from an architectural perspective
– The importance of negotiation

 User stories vs. use cases

 Techniques for writing good user stories & use cases

 Defining goal hierarchies

 Measurable acceptance criteria

Architectural Thinking for Intelligent Systems: System Functionality2

© DFKI - JK

Tutorial Assignment 4:

 We dive deeper into the functional requirements our system
has to meet and formulate user stories and use cases.

 We analyze functional dependencies by creating a goal
hierarchy.

 Remember to make your requirements SMART.

Architectural Thinking for Intelligent Systems: System Functionality3

© DFKI - JK

Two established Methods to capture Functional
Requirements

 User stories

 Use cases

Architectural Thinking for Intelligent Systems: System Functionality4

© DFKI - JK

User Stories Revisited

Architectural Thinking for Intelligent Systems: System Functionality5

https://agileinpills.wordpress.com/2013/07/18/learning-by-teaching-user-stories/

© DFKI - JK

What is a User Story? In comparison to a Use Case?

Architectural Thinking for Intelligent Systems: System Functionality6

It’s often best to think of the written part as a pointer to the real requirement.
http://www.mountaingoatsoftware.com/agile/user-stories

My one liner is that a story is a promise to have a conversation and a
use case is the record of the conversation. If you think you need one.
Jim Standley

http://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo

A Use Case is a way of describing requirements.
A User Story is a way of prioritizing work. Tim Wright

User Story is simply, a user’s story. It is business people’s version of describing the world, their way of
“starting an idea” basically starting a conversation (requirements elicitation) of whether their idea (to
get some business benefit) is feasible.

© DFKI - JK Architectural Thinking for Intelligent Systems: System Functionality7

© DFKI - JK

Epic vs. User Story

Architectural Thinking for Intelligent Systems: System Functionality8

As a user, I can backup my entire hard drive.

Because an epic is generally too large for an agile team to
complete in one iteration, it is split into multiple smaller user
stories before it is worked on.

The epic above could be split into dozens (or possibly hundreds),
including these two:

As a power user, I can specify files or folders to backup based on file size,
date created and date modified.

As a user, I can indicate folders not to backup so that my backup drive isn't
filled up with things I don't need saved.

http://www.mountaingoatsoftware.com/agile/user-stories

© DFKI - JK

Good User Stories

Architectural Thinking for Intelligent Systems: System Functionality9

“As a [role] I can [function] so that [rationale].”

Bill Wake's INVEST acronym
Independent We want to be able to develop in any sequence.
Negotiable Avoid too much detail; keep them flexible so the team can

adjust how much of the story to implement.
Valuable Users or customers get some value from the story.
Estimatable The team must be able to use them for planning.
Small Large stories are harder to estimate and plan. By the time of

iteration planning, the story should be able to be designed,
coded, and tested within the iteration.

Testable Document acceptance criteria, or the definition of done for
the story, which lead to test cases.

As a student, I can find my grades online so that I don’t have to wait until
the next day to know whether I passed.

https://help.rallydev.com/writing-great-user-story

© DFKI - JK

Definition in an Incremental 3-Step Process

 Brief description of the need
 Conversations to solidify the details (happening during

backlog grooming and iteration planning)
 Tests that confirm the story's satisfactory completion

 Acceptance criteria = Definition of Done for the story
1. Product owner should list as many as possible to clarify the intent

of the story
2. Team should have a conversation about them and adjust the

acceptance criteria - capture the critical details in acceptance
criteria

3. Once an iteration has begun, testers can formalize acceptance
criteria into acceptance tests

Architectural Thinking for Intelligent Systems: System Functionality10

https://help.rallydev.com/writing-great-user-story

© DFKI - JK

Frequent Mistakes when defining Acceptance Criteria
 One-sided and incomplete exploration

– Acceptance is only looked at from one angle
– If possible, consider all facets of acceptance
– System quality for the user: efficient, simple, intuitive, informative,

flexible

 Discuss, discuss, discuss …
– What are the really critical features for the user?
– How do we make them measurable?

 The acceptance test forgets the user
– Too much focus on technical system details
– Customer needs are not taken seriously
– Measurability remains vague

Architectural Thinking for Intelligent Systems: System Functionality11

© DFKI - JK

Exercise: Which criteria are violated in these “user
stories”?

1) “Design brochure layout.”

2) “Write game rules.”

3) “I want the brochure to be colorful.”

4) “As Product Owner, I want a list of highly-
rated restaurants on the brochure.”

5) “Play test the game.”

Architectural Thinking for Intelligent Systems: System Functionality12

© DFKI - JK

“As Product Owner, I want a list of highly-rated restaurants
on the brochure.”

 Drawbacks: It’s not only about you!

 Better: Focus on your end users and stakeholders. “As a
gourmet tourist, I want a list of highly-rated restaurants on
the brochure.”

 Better: “As the Chicago Public Health Department, I want
warnings about restaurants that serve raw ingredients so
that tourists don’t get sick on our dime.”

Architectural Thinking for Intelligent Systems: System Functionality13

© DFKI - JK

“I want the brochure to be colorful.”

 Drawbacks: not Independent, not Estimable (without
knowing other features of brochure), not Small.

– This is an easy trap for those of us who grew up with the
habit of writing “the JFIDM _shall_ comply with the IEEE-
488 interface specification.”

 Better: Use “colorful” and other cross-cutting requirements
as acceptance criteria on each of the specific features in the
backlog they apply to.

Architectural Thinking for Intelligent Systems: System Functionality14

© DFKI - JK

“Design brochure layout.”

 Drawbacks: not Independent, no business Value. This is a
task representing a horizontal architectural layer or phase.
The architecture will be done in a vacuum, possibly
contributing to analysis paralysis.

 Better: “As a dog owner, I can find a meal schedule on the
brochure so I know whether this doggy day care center is
appropriate for my hungry dog.”
– This will lead to only the necessary amount of design to

support this Sprint’s features. The layout might change
the next Sprint, but rework is cheaper than no work.

Architectural Thinking for Intelligent Systems: System Functionality15

© DFKI - JK

“Write game rules.”

 Drawbacks: not Independent, no business Value, not Small.

 Better: “As a newbie game player, I want to know who goes
first so we can start the game.”

 Better: “As a competitive gamer, I want a way to leapfrog my
opposing players.”

Architectural Thinking for Intelligent Systems: System Functionality16

© DFKI - JK

“Play test the game.”

 Drawbacks: Not Independent. Encourages phasewise
development.

 Better: Make testing, refactoring, etc. a default acceptance
criteria on every Product Backlog Item.
– But: If you failed to fully test and refactor in previous Sprints, you are

in technical debt! You are already working on a legacy product. In
this case you may need to make testing and refactoring first-class
Product Backlog Items to make up for your sins. This practice is
controversial, and technical debt repayment cannot honestly be
called a User Story. A PBI that’s not a User Story may still be useful
as a starting point for a conversation about how to reduce technical
debt incrementally while continuing to deliver new value.

Architectural Thinking for Intelligent Systems: System Functionality17

© DFKI - JK

Exercise: Let us define some Acceptance Criteria
 A bank customer can change his PIN.

– Acceptance Criteria: ….

 As a student, I can find my grades online so that I don’t have to
wait until the next day to know whether I passed.
– Acceptance Criteria: ….

 As a book shopper, I can read reviews of a selected book to help
me decide whether to buy it.
– Acceptance Criteria: ….

 As an author, I want the spell checker to ignore words with
numbers so that only truly misspelled words are indicated.
– Acceptance Criteria: ….

Architectural Thinking for Intelligent Systems: System Functionality18

http://blogs.collab.net/agile/user-story-examples-and-counterexamples

© DFKI - JK

Exercise: High or low Level of Detail?

As a <user type>, I want to <function> so that <benefit> .
1) As a consumer, I want the shopping cart functionality to easily purchase

items online.
2) As an executive, I want to generate a report to understand which

departments need to improve their productivity.
3) A team member can view the iteration status.
4) A team member can view a table of stories with rank, name, size,

package, owner, and status.
5) A team member can click a red button to expand the table to include

detail, which lists all the tasks, with rank, name, estimate, owner, status.
6) A team member can view the iteration's stories and their status.
7) A team member can view the current burndown chart on the status page,

and can click it for a larger view.
8) A team member can edit a task from the iteration status page.

Architectural Thinking for Intelligent Systems: System Functionality19

© DFKI - JK

Writing Effective Use Cases

Architectural Thinking for Intelligent Systems: System Functionality20

© DFKI - JK

Use Cases reduce Decision Space

Architectural Thinking for Intelligent Systems: System Functionality21

Welcome to the realm of use cases. Systems folks will have to
analyze and carry out “thought experiments” and conceive
how their system should precisely work in order to realize the
agreed story.
Use cases are a very effective tool to do that.

So fundamentally given a concrete system definition, finite
actors and business logic rules that do not contradict
computation theory, there is a finite (but large) set of
possibilities that can occur and they group together as
scenarios and use cases.
Use cases are something really fundamental, but only when
considered from a modeling perspective.

Nikhil Shahhttp://alistair.cockburn.us/A+user+story+is+to+a+use+case+as+a+gazelle+is+to+a+gazebo

© DFKI - JK

A possible
Use Case
Template

Architectural Thinking for Intelligent Systems: System Functionality22

© DFKI - JK

«An Actor with a goal calls on the responsibilities of
another»

Architectural Thinking for Intelligent Systems: System Functionality23

SuD – system under discussion

Cockburn, S. 24

© DFKI - JK

Goal Hierarchies

 "I want this sales contract. To do that I have to take this
manager out to lunch. To do that I have to get some cash.
To do that I have to withdraw money from this ATM. To do
that I have to get it to accept my identity. To do that I have to
get it to read my ATM card. To do that I have to find the card
slot."

 ”I want to find the tab key so I can get the cursor into the
address field, so I can put in my address, so I can get my
personal information into this quote software, so I can get a
quote, so I can buy a car insurance policy, so I can get my
car licensed, so I can drive.”

Architectural Thinking for Intelligent Systems: System Functionality24

Cockburn, S. 61

© DFKI - JK Architectural Thinking for Intelligent Systems: System Functionality25

Cockburn, S. 69

© DFKI - JK

3 main Levels of Goals: White – Blue – Indigo

Architectural Thinking for Intelligent Systems: System Functionality26

Cockburn, S. 62

© DFKI - JK

Use Case Example on Level «White»

Architectural Thinking for Intelligent Systems: System Functionality27

© DFKI - JK

«White» vs. «Blue»

Architectural Thinking for Intelligent Systems: System Functionality28

© DFKI - JK

Use Case Example on Level «Blue»

Architectural Thinking for Intelligent Systems: System Functionality29
…

© DFKI - JK

Use Case Example on Level «Indigo»

Architectural Thinking for Intelligent Systems: System Functionality30

© DFKI - JK

Notation

Architectural Thinking for Intelligent Systems: System Functionality31

© DFKI - JK

How to Identify Use Cases?

Architectural Thinking for Intelligent Systems: System Functionality32

© DFKI - JK Architectural Thinking for Intelligent Systems: System Functionality33

© DFKI - JK

Exercise:
Login Use
Case

Your new
colleague
sends you the
Use Case
Login for
evaluation.
Give him
feedback and
corrections.

Architectural Thinking for Intelligent Systems: System Functionality34

© DFKI - JK

Exercise: Cash withdrawals from ATMs

1. Develop a goal hierarchy and define 3 use cases at the
levels "white-blue-indigo".

2. What are the major errors when doing a cash withdrawal at
an ATM considered at level "blue" ?

3. Define possible acceptance criteria and tests for the goals
and use cases defined above.

Architectural Thinking for Intelligent Systems: System Functionality35

© DFKI - JK

How to Proceed (Cockburn, p. 90 ff.)

 Use Simply formulated sentences to describe active actions
– Subject – verb – object: The System deducts the amount from the …

 Subject = «Who is on it?»
What is the turn of the subject? How does it transfer control to another subject?
or Finish the job and «clean up the dirt"

 Take bird's eye view - not a system´s view
– Bad: „Get ATM card and pin number“
– Good: „The customer puts in the ATM Card and PIN“

 Goals correspond to intentions
– Bad: „System asks for name. User enters name…“
– Good: „User enters name and address (to specify delivery address)“

 Demonstrate how the process is progressing towards the
goal of the use case.

Architectural Thinking for Intelligent Systems: System Functionality36

© DFKI - JK

How to Proceed (continued)

 Make the purpose of validations clear
– Bad: „System checks the password. If … then … else.“
– Good: „The system verifies that the password is correct.“

 Describe repeating and branching activities precisely (do not
use pseudo code)

Architectural Thinking for Intelligent Systems: System Functionality37

© DFKI - JK

Best Practices

Architectural Thinking for Intelligent Systems: System Functionality38

© DFKI - JK

When will we have captured all use cases?

Architectural Thinking for Intelligent Systems: System Functionality39

© DFKI - JK

Consistency of User Story and Use Case

Architectural Thinking for Intelligent Systems: System Functionality40

Use Case: Titel

Description : Summary in one sentence

Level: High Level Summary, Summary, User Goal,
Sub-Function, Low Level

Main Actuator: Actuator

Preconditions: Preconditions
Postconditions: Postconditions (Success, Minimal)

Main scenario
1. Describe Step 1
2. Describe Step 2

Alternative Scenarios

As a [role]

I can [function]

so that [rationale]

+ Acceptance Criteria

© DFKI - JK

Summary

 Use cases and user stories address different aspects of the
system (how vs. what/why)

 Focus on uniform terminology, make yourself aware of
levels of abstraction and write uniformly within and across
levels
– Goal hierarchies make levels explicit and help to sort the

set of use cases
 Precisely formulate use cases and use stories and if both

are used, align them correctly with each other
– Make them SMART
– Formulate measurable acceptance criteria

Architectural Thinking for Intelligent Systems: System Functionality41

© DFKI - JK

Working Questions

1. By which means can we capture requirements?
2. What is your personal stake on the relationship

between user stories and use cases?
3. What helps in finding the right level of

detail/abstraction in a user story?
4. Why are measurable acceptance criteria so

important when using user stories?
5. Why should use cases be formulated at different

levels of detail? Which levels are useful?
6. How are goals and steps related in a use case?

Architectural Thinking for Intelligent Systems: System Functionality42

	System Functionality
	Agenda
	Tutorial Assignment 4:
	Two established Methods to capture Functional Requirements
	User Stories Revisited
	What is a User Story? In comparison to a Use Case?
	Foliennummer 7
	Epic vs. User Story
	Good User Stories
	Definition in an Incremental 3-Step Process
	Frequent Mistakes when defining Acceptance Criteria
	Exercise: Which criteria are violated in these “user stories”?
	“As Product Owner, I want a list of highly-rated restaurants on the brochure.” �
	“I want the brochure to be colorful.”
	“Design brochure layout.”
	“Write game rules.”
	“Play test the game.”
	Exercise: Let us define some Acceptance Criteria
	Exercise: High or low Level of Detail?
	Writing Effective Use Cases
	Use Cases reduce Decision Space
	A possible Use Case Template
	«An Actor with a goal calls on the responsibilities of another»�
	Goal Hierarchies
	Foliennummer 25
	3 main Levels of Goals: White – Blue – Indigo
	Use Case Example on Level «White»
	«White» vs. «Blue»
	Use Case Example on Level «Blue»
	Use Case Example on Level «Indigo»
	Notation
	How to Identify Use Cases?
	Foliennummer 33
	Exercise: Login Use Case
	Exercise: Cash withdrawals from ATMs
	How to Proceed (Cockburn, p. 90 ff.)
	How to Proceed (continued)
	Best Practices
	When will we have captured all use cases?
	Consistency of User Story and Use Case
	Summary
	Working Questions

