Al
SAARLANDES ,,C/L“

OOl NIVERSITAT @ 'm
“HUHHUN DES
Wyl

Modeling for Architects I:
UML

Architectural Thinking for Intelligent Systems
Winter 2019/2020

Marcel Koster, Kali Waelti, Jochen Britz
Prof. Dr. habil. Jana Koehler

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

References & Special Thanks

= Prof. Sven Apel for his slides & material ©

= https://www.uml-diagrams.org/ for several images

= https://c4Amodel.com/ for some images

2 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

https://www.uml-diagrams.org/
https://c4model.com/

UMIVERSITAT
DES
SAARLAMDES

Agenda

= Capturing architectural concepts with UML 2
= Basics & class diagrams (repetition)

= Sequence diagrams

= Package & Component diagrams

= State machines

= Use case diagrams

3 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLANDES - A

Views and Diagrams

= We will later in this lecture discuss views, which help us to
communicate architectural concerns and decisions

= There is no standard for the representation of views, but
some modeling standards are helpful and commonly used

= Context view — none !
= Component view — UML package and component diagrams
= Distribution view — UML package and component diagrams

= Runtime view - UML sequence diagrams, UML state
machins, BPMN collaboration diagrams

= Functional requirements — UML use case diagrams

4 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT 1
DES ?
SAARLAMDES = \

Learning Objectives

= Know
— purpose of UML
— 14 different diagram types

= Being able to
— capture architectural concepts with UML 2.5.1

— communicate architectural concerns and decisions using
Views

— explain how UML describes structures, processes and
states of software

5 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

What is UML?

= Uniform notation
Booch + OMT + Use Cases (+ state charts)

= UML IS *not*

— A method
— A process

6 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

UML (in a nutshell)

attribute:Type = initial Value
operation{ang lstkreturn type

Generalization

i

Subtype 1 ‘ subiype? |

Constraint
{description of constraint}
Stereotype
ustemeotype Names

Note
| mmuﬂdg T
Object

obiect neme Class MNarme

Class Diagram: Interfaces

Mﬁud.ﬁm .:I.tafmcr | .ill']-.::;:aw- Client
alarface I 4
role B |:;ruﬂ dependency | Class
Clasa A Class B L i —
role A E E
Multiplicities . | realization
Implementing . _ _ __ .
1 Class
exactly one Interface Name Sient
O — — ~dependency | Class
i o e —
Implementing |
1 optional Class | A—
| Class | (zero or one) 4 Activity Diagram
Class Diagram: tart
== Class | m’ff‘rj Parameterized Class : 1
template class Ty
r —_IT . @.‘t’wiﬂ"-
wosa L1)
Sel J fork U
composiion
bound element

[o s o

Y i
midition [else] - &
e R
_ ""ﬂd‘n | Concurrent |

N N Adivity)/

Qualified Association Set<Integer>
Grum;“. G_dlvit:.r'
Navigability meTRe
role name Association Class 2
E—-AE m Class | join
Dependency f

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

-

Why UML?

= There are other modeling languages like

— Systems Modeling Language SysML
* |s less software centric and a lot smaller

— The Open Group’s ArchiMate
« Best for higher-level Enterprise Architectures

= UML is the de-facto standard for software modeling

= UML fits nicely under the covers
— Describes the system from various perspectives

8 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES a L

SAARLAMDES

Purpose of UML

= Provides unified notation and semantics of modeling
elements

= Describes structures and processes of a system

= Offers possiblility for different views on a system

= Allows people to understand and talk about the design
decisions

9 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES = l

Maps of Your System

= Use different views with different levels of detall
— Tell different stories to different types of audiences

= Helps to describe architecture during up-front design
sessions as well as retrospectively documenting an
existing code base

Like source code, Google Navigating an unfamiliar Zooming out further will Different levels of zoom
Street View provides a environment becomes provide additional context allow you to tell different
very low-level and easier if you zoom out you might not have been stories to different
accurate view of a though. aware of. audiences.

location.

10 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

UML 2.5 Hierarchy from Paulo Merson

Diagram

Structure Behavior
Diagram Diagrarm
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram
Profile Esﬂt::nu Eﬁf Deployment Package Interaction State Machine
Diagram Diagram Diagram Diagram Diagrarm Diagram
Interaction -
Sequence Communicaticn Dfe?ucie?u Timing
Motation: UL i D i
Diagram iagram Diagram Diagram
11 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

https://commons.wikimedia.org/wiki/File:Uml_diagram2.png

STRUCTURAL DIAGRAM
TYPES

12 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Class Diagram — building blocks of object-oriented systems

interface winterfaces android.app:: Activity
D android.view::SurfaceHolder # onCreate(state: Bundle)
+ addCallback(callback: SurfaceHolder.Callback) # onStart()
jm===- =] + remaveCallback{callback: SurfaceHolder. Callback) = - - - - - - - \ # onStop()

onDestroy()
+ onCreateOptionsMenu(menu: Menu): Boolean
+ anOptionsitemSelected(item: Menultam): Boolean

+ sefType(type: Integer)
+ setFormat{format: Integer)
+ getSurface(). Surface

]
i
I
I
|
1
!) :
| : i
_____;g-: wUSE D | uSan : WLSED ———— generalization
— ! |]
1
! W : !
! winterfaces : CameraDamo
| android.view::SurfaceHolder.Callback I b p 8
! —— | > = bullon ick: Butlon
| + surfaceChanged (holder; SurfaceHolder, | - shutterCallback: ShulterCallback ~f——
usage : format: Integer, width: Integer, height: Integer) | - rawCallback: PictureCallback T class
dependency I + surfaceCreated(holder: SurfaceHolder) —! - jpegCallback: PictureCallback altributes
| ! + surfaceDestroyed (holder: SurfaceHolder, - context
| eusew e J : # JonCreate(savedinstanceState: Bundle)
! 4:] ! # lonStart()
T : . # JonStop()
!] | # ionDestroy()
! android.view::SurfaceView I ! + [onCreateOptionsMenu{menu: Menu): Boolsan
i
: + (draw(canvas: Canvas) ,.f :
: + getHolder(): SurfaceHolder S !
| ¢ interface 1 ——— aggragation
: J realization | -
| ! 1
| - ¢ 1
e — I 1
— ' i ~ camera
generalization L :
i Proview _ ! android.hardware::Camera
- . ~preview
i mHolder: SurfaceHolder] + open{camerald: Integer). Camera
| - + getParameters(): Parameters
ey + screaten Preview(context: Contaxt) + getParameters|params: Parameters)
constructor b + /surfaceChanged (holder: SurfaceHolder, formal: + setPreviewDisplay (holder: SurfaceHolder} {final}
Integer, width: Integer, height: Integer) i o—— + startPreview() {final}
+ fsurfaceCreated(holder: SurfaceHolder) + stopPreview() {final}
+ fsurfaceDestrayed (holder: SurfaceHolder) + camera | + release() {final}
+ igetHolder(): SurfaceHalder = + takePicture (shutter: ShutterCallback, raw: PictureCallback,
+ ldraw(canvas: Canvas) postview: PictureCallback, jpeg: PictureCallback) {final}

derived operations

13 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT 1
DES -
SAARLANDES a A

Class Diagram Focus on Behavior

= Class diagrams show generic descriptions of
possible systems

= Object diagrams show particular instantiations of systems
and their behavior

= Attributes and operations are also collectively called
features

= RIisk of turning into data models
— be sure to focus on behavior!

14 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Class Diagram UML 2.5 Reference

15

o nape

[1

Package1

wintarfaces|Foo

+Hdsthod 1)

Class1

-Property1
+hethiod 1 ()

A— g

A B

A4gp—EB

Dascription
Package

A collection of interaces and classes.

Interface
Microsoft guidelines specify that interfaces

should start with |. This graphic cam also
sometimes be used as an abstract class.

Class
Properties or attributes sit at the top, methods

of operations at the bottom, + indicates public
and # indicates protected

Inheritence - 8 inherits from A.
“is-a” relationship.

Generalization -8 implements A,

Association - A and B call each other

One way Association.
A can call B's properties/methods, but not visa versa_

Aggregation
A “has-a"instance of B. B can survive if A s disposad.

Composition

& has an instance of B, B cannot exist without &

A note

Some descriptive text attached to any item.

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES -

SAARLAMDES

Interfaces

= Equivalent to abstract classes minus the attributes

= Represented as classes with explicit stereotype
«interface» or implicit lollipop notation

«interfaces «Call» explicit
______ {> Iname [= - - - -] style
—~ «call implicit
] style
Iname
supplier realization nterface usage client

16 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

DES
SAARLAMDES

UMIVERSITAT
L |

Objects
= Class is a blueprint from which objects are created
— Class: Human

— Object: Man, Woman
= Shown as rectangles with their name and type underlined

triangle: Polygon
triangle

center = (0,0)
vertices = ((0,0),(4,0),(4,3))

borderColor = black

fillColor = white
:Polygon
triangle: Polygon O
scheduler

© DFKI - JK

17 Architectural Thinking for Intelligent Systems: UML

UMIVERSITAT
DES
SAARLAMDES

Associations

= Represent structural relationships between objects
= Multiplicity constraints how many entities one may be

associated with

next

asociabion name

Priority

0..1

Subscription

= self association

0.1

previous

rolename = SO0Urce

tickets

0.1

=" nultiplicity

=<— binary association

ok

Reservation

participating class

18 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Aggregation vs. Composition

= Aggregation — parts may be shared
= Composition — one part belongs to one whole

(public) -
visibility rolename multiplicity
aggresate in aggregation J(/
both associations
l{ +sid§5
Containse >
Polygon [~ = Gide
I {ordered}
composition ———= 1 ordering
_bundle | GraphicsBundle

—
1| color
/ texture
density

navigability
direction

19 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES |-

Generalization

= MailOrder and BoxOfficeOrder specialize their superclass
Order

Order

superclass (parent)

date; Date

confirm() = abstract operation

/7 ‘\EH eralization

MailOrder BoxOfficeOrder

dateFilled: Date hold: Boolean | S1°€lass (child)

confirm() confirm()

20 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT 1
DES
SAARLAMDES = k

Why Inheritance?

= New software often builds on old software by imitation,
refinement, or combination

= Similarly, classes may be extensions, specializations or
combinations, of existing classes

21 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES -
SAARLAMDES - L

Generalization Expresses...

= Conceptual hierarchy

— conceptually related classes can be organized into a
specialization hierarchy
* people, employees, managers
e geometric objects
= Polymorphism
— objects of distinct, but related classes may be uniformly

treated by clients
 array of geometric objects

= Software reuse

— related classes may share interfaces, data structures or
behavior
e geometric objects

22 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES =
SAARLANDES A

Component Diagram

= Shows components, provided and required interfaces,
ports, and relationships between them

= Based on assumptions, that previously constructed
components could be reused

— or be replaced by some other equivalent component

= Artifacts that implement the component are intended to be
capable of being deployed independently

— e.g. for updating an existing system

25 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT 1
DES ?
SAARLAMDES = \

Components Could Represent...

= Logical components
— e.g. business components, process components, etc.

= Physical components

— e.g. EJB components, COM+ and .NET components,
WSDL components, etc.

= Acomponent is areplaceable part of a system that
conforms to and provides the realization of a set of
Interfaces

26 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Component Notation

3 |

UserServices

UserService Component

= Aninterface is a collection of operations that specify a
service that is provided by or requested from a

component

Weather

Forecast 3
O WeatherServices

Provided Interface

27

|Order

3]

UserServices

Services

—C

Required Interface

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES 1
SAARLAMDES -

Components Notation: Ports

= A portis aspecific window into an encapsulated
component accepting messages

— to and from the component

2
SearchEngine
ProductSearch
(O———] searchPort
Simple Port

28 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT]
DES
SAARLAMDES - k

Components: Parts and Connectors

= A partis aspecification of arole that composes part of
the implementation of a component

= A connector is a communication relationship between
two parts or ports within the context of a component

— Connector linking could be either delegation or
assembly connector

29 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES L
SAARLAMDES F

Components: Assembly Connectors

= Connector between two or more parts or ports

= Defines that one or more parts provide the services that
other parts use

«components

—
= | Web Store
gCcomponents
:Authentication
ICustomers

—@—[] wcomponents

:Customers

agomponents [|J—
:Orders

Assembly connector that assembles 3 parts

30 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES 2
SAARLAMDES -

Components: Delegation Connector

= Connector that links the external contract of a component
to the realization of that behavior

= Represents the forwarding of events
= Can be used to model hierarchical decomposition of

behavior
= A port may delegate to a set of ports on subordinate
components
acomponents =
Web Store o
ISearch

O} |Search g]
~_—] «components

:SearchEngine

31 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Component Diagram: A Reference

internal structure

compartment

/ structured classifier — subsystem component \

usubsystem» WebStore

2]

ProductSearch

port

provided
interface

OnlineShopping

provided
interface

UserSession

Oo—

k"""-j}L
f E ;U :SearchEngine

internal structure

delegation connector

32

£]

«subsystam» Warehouses

internal structure

2]

(Inventory

[(H—O—1+—0<=-

wsubsystem» Accounting

g]

Search
E Inventory
—C —==>0—
delegation required
connector interface
role, part component
Y anage
2] Orders
+—O0— — -
1 .shopping cart [H—C—1—(—x=0—C
I 1
dependency
UserSession assembly connector
ball-and-socket
{1 Manage
E Customers
] :Authentication 1 C 1 C_ —=0—1

internal structure

2]
:Orders ., C_E

1

0]

ball-and-socket

g]

Custumersi

==

+—-0C—]

:Customers

Manage i‘l‘\assembly connector

£
delegation connector

Architectural Thinking for Intelligent Systems: UML

provided
interface
Manage
Inventory
|
|
|
: dependency
|
|
|
|
Manage |
Inventory |
E B
required
interface
© DFKI - JK

UMIVERSITAT
DES =
SAARLANDES A

Packages Notation

= A package diagram shows structure of the designed
system at level of packages

= Package is a namespace used to group together elements
that are semantically related and might change together

— May own packageable elements like
Type, Classifier, Use Case, etc.

— Can be used as a template for other packages

 Template parameters can be offered through packageable
elements

— Different directed relationships
e use, import, merge

33 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UNIVERSITAT ,
DES 1
SAARLANDES

Package Diagram: A Reference

]] 1 1]
Web Mobile Phone Mail
Shopping Shopping Shopping Shopping

| T | T |
! I merge | | l
|l emereer o | «merges
I | | |

package | | | |
| #Usen | | | HusER I
l______________________ __________

|
| package

|
: —I ﬁ w merge
|
|

7— — = Payment - — = _f- —_ Cart
usage : private import :
dependency aimports | simports
M uml-diagrams.org
LV 1V

public
Customer import Inventory

package

34 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Package Diagram: Design Pattern known as Transfer ODbj.

o T |

I . .
Transfer Object Pattern | Info: StringExpression, |
| BusinessObj: StringExpression |

— e s s . . g

winterfaces wUsey _
$<Info>Service$ | = = ainterfaces
[—— == $<Info>%

getiid: <ID=): $<Info=% |
set(updated: $<info=$) | A

A wse»

$<Info><BusinessObj>% - — — — — $<info>TO%

A

| «binds
| <10 -> Integer,
| Info -=“Customer”,

| BusinessObj -> "DAQ" >
I

Customer
Data Access

35 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT

DES

SAARLAMDES

)=~

Depl

oyment Diagram

device

execution
environment

deployed

artifact <

36

deployment Book Club Web Application)
device
adevices Sun Fire X4150 Server /
3
wJSP servers Tomcat 7 wdevices Sun SPARC Server
L —] execution
aexecubonEnvironments environment wdatabase systems
N Catalina Servlet Container Oracle 10g
deployment \
specification — O
wschemas
HH wdeployment specs Users
== web.xml wprotocols
) O TCPIP
wartifacts
,,_,_..—-—-—-15" book_club_app.war Q
| ™~ ascheman
L~ =~ _ «manifesty Orders
T
- communication
\ scomponents =] path
P
N o OnlineOrders wscheman
~ wartifacts L) 55 Inventory
user_services.jar & f
web-tools-lib.jar /
deplc:-yed/
arfifact
Architectural Thinking for Intelligent Systems: UML © DFKI - JK

BEHAVIORAL DIAGRAM TYPES

37 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

sl

Use Case Diagram

f subject, system boundary

«Subsystem»
Checkout .M
mURp IRy extend relationship
xtend» ¢
association exien f-‘q————f”’
actor
\\i» L
Checkout
\\—/ actor
Customer cincludes x\ Clerk
._-f""f ”
include — . : i il
relationship Z:_{U—H/ /’v.l L L i
multiplicity Payment Service
use case

‘\h‘\""‘—-_

@ uml-diagrams.org

,-'—''_F'_FFH-F
Manage
Users

Administrator

38 Architectural T

hinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Using Use Case Diagrams

= Generic description of an entire transaction involving
several actors

= Presents a set of use cases (ellipses) and the external
actors that interact with the system

= Dependencies and associations between use cases may
be indicated

= “Ause case Is a snapshot of one aspect of your system.
The sum of all use cases is the external picture of your
system”

39 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UNIVERSITAT ‘
DES
SAARLAMDES

Sequence Diagram

sd submit_comments) lifeline «serviets
DWRServiet
window ajavascripty»
:Comments
gate
: | | object creation
validate() N message |
synchronous / validate() |
message —— P ccreater , |
_____ - aa|axn
execution e occurrence rowy |
specification specification aajaxy | |
return | / «ajax»
message ‘E: ------- T
asynchronous
/‘F’ | message
gate |
{"‘ _____
| «callback» errors
duration ___—— I |
constraint 1
ref destruction
/,,_—-————Ib- Handle Errors occurrence
. specification
interaction use J_J
= — — —— —— uml-diagrams.org
1

40 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES a A

Using Sequence Diagrams

= Depicts a scenario by showing the interactions among a
set of objects in temporal order

= Objects (not classes!) are shown in vertical bars

= Events or message dispatches are shown as horizontal
arrows from the sender to the receiver

= Avoid returns in sequence diagrams, unless they add
clarity

41 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES _
SAARLAMDES

Asynchrony and Constraints in Sequence Diagrams

caller exchange receiver active
. —_— objects

corstraints . lift receiver =
MESSase
{fb-a<1sec)} il :Dgne
b | =
fc-b<10sec}
g dial digit —
comment
The callis d
routed through route
the network. d' message with duration
{d' -d< 5sec) _____ringing tone phone rings
= answer phone
At this point,
the parties SPSN D stopringing .
can talk. a a a

42 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES -
SAARLAMDES F

State Diagram

= Describes the temporal evolution of an object of a given
class in response to interactions with other objects inside
or outside the systems

| assign to subscription
Initial state

ﬂed out state \
bu
[AvailableT/ B Locked | J { Sold]
JM unlock J

k transition /

exchange

trigger event

43 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES —
SAARLANDES a A

State Diagram: States and Events

= A state is a period of time during which an object is
waiting for an event to occur

— may be nested

— depicted as rounded box with (up to) three sections
* name
* State variables
* triggered operations

= An event is a one-way asynchronous communication from
one object to another

— atomic (non-interruptible)
— may cause object to make a transition between states

44 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UNIVERSITAT
DES -
SAARLANDES n

Transitions

= Atransition is an response to an external event received
by an object in a given state

— May invoke an operation, and cause the object to
change state

— May send an event to an external object

— Internal transitions are part of the triggered operations of
a state

— External transitions label arcs between states

45 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT §
DES
SAARLAMDES = k

Operations and Activities

Operation

— Atomic action invoked by a transition
« Entry and exit operations can be associated with states

Activity
— Ongoing operation that takes place while object

IS In a given state

 Modelled as “internal transitions” labelled with the
pseudo-event do

46 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Nested Statechart

/get dial tone

(1dle

caller
hangs up
fdisconnect

47

Invalid
Ld::u’ play message’J [Cunnecting]
Pinned | s B—‘H’usy ;husy connected
il do/ play busy
callee callee tone
answers hangs up \/
v po—
inging

Talking\]—“:

\.

callee answers

/enable speech

do/ play ringing tone

Architectural Thinking for Intelligent Systems: UML

i Event I
State chive f Timeout W
\ Ld o/ play messageJ
after (15 sec.)
: : after (15 sec.) ‘ Transition
f DialTone dial digit(n) - Dialing _—
lft do/ play dial tone dial digit(n)linvalid]_
receijver dial digit(n)[valid]

‘ Operation

i

Activity

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Concurrent Substates

/ Taking Class \\

concurrent composite state
s Incomplete \\\
lab
lab done done
®— Lab Lab2

L > T project done normal
erm =(@) final state of completion
®—| project one thread transition
Final pass =1 concurrent thread
\H Test ~©® /
fail | .
\ abnormal exit =\ _Failed /

48 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UNIVERSITAT ‘
DES
SAARLAMDES

Activity Diagram: Resolve an issue in software design

-

Resolve Issue \

Create
ticket

Reproduce

issue

Update

ticket

[can't reproduce]

[issue
reproduced) [known issue]

Identify Determine
issue [new issue] | resolution

Fix
Issue
[issue not resolved] Verify
Fix

[issue resolved]
Close O
ticket

\ @ uml-diagrams.org —/

49 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

50

USING UML

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES —
SAARLANDES a A

Perspectives

= Conceptual
— Represent domain concepts: Ignore software issues

= Specification
— Focus on visible interfaces and behavior: Ignore internal
Implementation

= |mplementation

— Document implementation choices: Most common, but
least useful perspective(!)

51 Architectural Thinking for Intelligent Systems: UML © DFKI - JK

sl

UMIVERSITAT
DES -
SAARLANDES A

More Than Creating Blueprints

52

Create Use Case diagrams to reason about the desired
behavior of your system

Specify the vocabulary of your domain using class
diagrams

Specify the sentences of your domain using component
and package diagrams

Use sequence diagrams, statechart diagrams and
activity diagrams (or BPMN) to show the way the things in
your domain work together to carry out this behavior

Architectural Thinking for Intelligent Systems: UML © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

53

OUTLOOK

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

UML Tools

— StarUML
» Sophisticated standalone software modeler

— draw.io
* Online draw app

— UMLet
« Standalone or Eclipse Plugin

— YEd

« Standalone graph editor

— astah UML
 Lightweight UML diagramming tool

— Microsoft Visio
« Diagramming and vector graphics application

54 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

http://staruml.io/
https://draw.io/
https://www.umlet.com/
https://www.yworks.com/products/yed
http://astah.net/editions/uml-new
https://products.office.com/en-ww/visio/flowchart-software

UMIVERSITAT
DES
SAARLAMDES

Further Reading

55

UML DISTILLED

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

MARTIN FOWLER

¥'r

Forewords by Cris Kobryn, Grady Booch, p

Ivar Jacobson, and Jim Rumbaugh

—

Yersion 2.0 OMG ! EJIEIFJELF il
UML Standard < R paTeRs

Cogrgighted Blalevial

Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Summary

= UML 2.5 in a nutshell
— The general purpose of UML
— Several diagram types for different tasks
— The different notations depending on the diagram
— The semantics of these diagrams

= Beeing able to use UML to model
— Classes, Packages, States, «Control Flow» , etc.

56 Architectural Thinking for Intelligent Systems: UML

© DFKI - JK

sl

UMIVERSITAT
DES
SAARLAMDES - L

Some Working Questions

1.

2.

57

What was the motivation behind UML?
Which UML diagrams exist and what are they used for?
Can diagram type X be used to model thing Y in a domain?

How can you use diagram X to model a problem description Y
(See assignment ©)

Architectural Thinking for Intelligent Systems: UML © DFKI - JK

	Modeling for Architects I:�UML
	References & Special Thanks
	Agenda
	Views and Diagrams
	Learning Objectives
	What is UML?
	UML (in a nutshell)
	Why UML?
	Purpose of UML
	Maps of Your System
	UML 2.5 Hierarchy from Paulo Merson
	Structural Diagram Types
	Class Diagram – building blocks of object-oriented systems
	Class Diagram Focus on Behavior
	Class Diagram UML 2.5 Reference
	Interfaces
	Objects
	Associations
	Aggregation vs. Composition
	Generalization
	Why Inheritance?
	Generalization Expresses…
	Component Diagram
	Components Could Represent…
	Component Notation
	Components Notation: Ports
	Components: Parts and Connectors
	Components: Assembly Connectors
	Components: Delegation Connector
	Component Diagram: A Reference
	Packages Notation
	Package Diagram: A Reference
	Package Diagram: Design Pattern known as Transfer Obj.
	Deployment Diagram
	Behavioral Diagram Types
	Use Case Diagram
	Using Use Case Diagrams
	Sequence Diagram
	Using Sequence Diagrams
	Asynchrony and Constraints in Sequence Diagrams
	State Diagram
	State Diagram: States and Events
	Transitions
	Operations and Activities
	Nested Statechart
	Concurrent Substates
	Activity Diagram: Resolve an issue in software design
	Using UML
	Perspectives
	More Than Creating Blueprints
	Outlook
	UML Tools
	Further Reading
	Summary
	Some Working Questions

