
© DFKI - JK

Architectural Styles

Architectural Thinking for Intelligent Systems

Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

Agenda

 Architectural styles and patterns

 Commonly used architectural styles
– Layers, Tiers
– Pipes & Filters
– Client/Server
– Peer-to-Peer (P2P)
– Blackboard
– Service-oriented architectures (SOA), Microservices
– Clean/Onion architecture
– Lambda architecture

Architectural Thinking for Intelligent Systems: Architectural Styles2

© DFKI - JK

Tutorial Assignment 9:

 We select an architectural style as foundation for the
desired system architecture and

 discuss potential alternatives and refinements.

 Views are created to document the architecture at several
levels of abstraction.

Architectural Thinking for Intelligent Systems: Architectural Styles3

© DFKI - JK

Importance of Styles and Patterns

Styles and patterns help us to apply proven solutions to our
architecture and to implement architectural principles

Architectural Thinking for Intelligent Systems: Architectural Styles4

Vogel et al.

similar in concept

implement/
make more concrete

implement/
make more concrete make more concrete

prerequisite for
language of

basis for the
realization of

basis for the
realization of

use

use

Architectural
Principles

Architectural
Concepts

Architectural
Pattern

Languages
Quality Attribute

Scenarios

Architectural
Tactics

Architectural
Styles

Architectural
Pattern

© DFKI - JK

Architectural Pattern

Architectural Thinking for Intelligent Systems: Architectural Styles5

A pattern for software architecture
describes a particular recurring design
problem that arises in specific design
contexts, and presents a well-proven
generic scheme for its solution.

Buschmann et al: Pattern-Oriented Software Architecture
Wiley 1996

© DFKI - JK

Architectural Styles

 Architectural style as a pattern for the structural organization
of a family of systems (Vogel according to Shaw & Garlan)

 Fundamental structure of a software system
– A set of component types that perform certain functions

at runtime
– A topological arrangement of these components
– A set of connectors that define the communication and

coordination between the components
– A set of semantic constraints that determine how

components and connectors can be interconnected

Architectural Thinking for Intelligent Systems: Architectural Styles6

© DFKI - JK

Architecture Styles (Basic Architectural Patterns)

There are different views in the literature, which basic patterns
are considered as style. These views also evolve over time …
 We are looking at:

1. Layers, Tiers
2. Pipes & Filters
3. Distributed Systems

a) Client/Server
b) Peer-to-Peer (P2P)

4. Blackboard (originating from AI)
5. Service-oriented architectures (SOA)

• Microservices
6. Clean/Onion
7. Lambda

Architectural Thinking for Intelligent Systems: Architectural Styles7

© DFKI - JK

1. Layers
 Elements of a layer have a similar degree

of abstraction
 A layer offers services to the layer above

– acts as server
 A layer uses only the services of the layer

directly below
– acts as client

 Higher layers accessing deeper layers
(below the immediate neighbor) destroy
the architecture!

Architectural Thinking for Intelligent Systems: Architectural Styles8

Presentation
Layer

Domain
Layer

Application
Layer

Infrastructure
Layer

© DFKI - JK

Advantages and Disadvantages of Layers

+ Easy to understand structural concept
+ Minimizes dependencies between components
+ Layers are independent of each other during development

and operation
+ Changes in one layer affect at most the lower neighboring

layer
̶ Performance of the system can be negatively affected if

requests have to be forwarded through multiple layers
̶ Changes in the data model can affect all layers (data

management in the infrastructure, domain, application,
presentation layers)

Architectural Thinking for Intelligent Systems: Architectural Styles9

© DFKI - JK

Special case of Layers: N-Tier Architectures

 Can be seen as a special form of layering, but also as a
specific form of a client/server architecture

Architectural Thinking for Intelligent Systems: Architectural Styles10

Client

Web
Container

Domain
Container

Enterprise
Information

System

Corporate
Database

 Tiers can communicate more
flexibly with their neighbors

 Bidirectional dependencies violate
top-down principle of layer
architecture

 Strong (access to immediate
neighbor only) or flexible
separation of layers (access
across arbitrary tiers)
 No dependency of lower tiers

on presentation tier
 Integration effort potentially higher

© DFKI - JK

Example: 3-Tier Architecture

Architectural Thinking for Intelligent Systems: Architectural Styles11

https://www.itwissen.info/Three-Tier-
Architektur-three-tier-architecture.html

https://stackify.com/n-tier-architecture/

© DFKI - JK

2. Pipes and Filters

 Sequence of processing units (filters) connected to each
other by data channels (pipes)
– Each filter passes its result directly to the next filter
– Pipes act as connectors between filter components

 Various coordination models can be implemented
– Decentralised/centralised control
– Pipes passive or active
– Data transfer complete, piecemeal, time-shifted

Architectural Thinking for Intelligent Systems: Architectural Styles12

Data
generation

Data
preparation

Data
compression

Data
storage

© DFKI - JK

Advantages and Disadvantages of Pipes and Filters
+ Easy to implement
+ Easy-to-understand structure
+ Clearly structured flow of information and control
+ Powerful pipes can decide to which instance of a filter (load

balancing) or to which filter component (encapsulation) they
pass the data

̶ Filters do not know each other
̶ Subsequent errors cannot be recognized and handled

̶ Configuration of sophisticated processing chains can be
difficult

̶ Filters only communicate via data objects
̶ All processing information must be contained in the data or in the

central processing unit
Architectural Thinking for Intelligent Systems: Architectural Styles13

© DFKI - JK

3a. Client/Server

 Applications (clients) are
operated locally

 Services requested by
clients are centrally
managed and made
available via a server

 Communication is a
simple request-response
scheme

Architectural Thinking for Intelligent Systems: Architectural Styles14

request
answer

© DFKI - JK

Rich versus Thin Client

 How is the functionality distributed between client and
server?

– Thin Client
• Only limited functionality directly implemented in the client,

highly dependent on server functionality
• Gmail (web browser + web server)

– Rich Client
• A lot of functionality locally in the client, less dependency on the

server
• MS Outlook (Windows Application + Mail Server)

Architectural Thinking for Intelligent Systems: Architectural Styles15

© DFKI - JK

Advantages and Disadvantages of Client/Server

+ Centralization of important, compute-intensive or sensitive
computations on the server

+ Thin clients easy to deploy and maintain
+ Rich clients still usable in case of server failure

̶ High network load (especially with thin clients)
̶ Distribution of functionality not always easy to decide
̶ Limits of scaling with very high numbers of clients (and a

single server)
̶ Scaling is hardly an issue in modern virtualized

infrastructures
Architectural Thinking for Intelligent Systems: Architectural Styles16

© DFKI - JK

3b. Peer-To-Peer (P2P)

 Equal components (peers) distributed over a network that
perform the role of both client and server and share
resources

 One type of connector («inter peer connection»)
– Usually the internet

 No centralized control, peers are free in communication
(any-to-any)

 Localization of peers by
– decentralized communication (peers exchange individual

lists of known peers with each other) or
– a central service (registry)

Architectural Thinking for Intelligent Systems: Architectural Styles17

© DFKI - JK

Advantages and Disadvantages of P2P

+ High reliability (no single point of failure)
+ Calculation-intensive tasks can be distributed
 Seti@Home

̶ Finding and detecting peers in large networks can be
difficult without a centralized registry
̶ Potential danger of P2P network decomposition

̶ No obvious solution how to implement error handling
̶ Who reacts when a peer malfunctions?

̶ No guaranteed response times
Architectural Thinking for Intelligent Systems: Architectural Styles18

© DFKI - JK

4. Blackboard

 Originally from Artificial Intelligence to solve complex
problems for which no deterministic solution method exists

 Blackboard acts as shared memory holding information
about the state of the problem

 Collaborative problem solving through otherwise
independent programs (agents)
– No calls between the programs, communication only via blackboard

 Optional control component evaluates solution progress on
the blackboard and activates available programs

Architectural Thinking for Intelligent Systems: Architectural Styles19

Blackboard as
central data

memory
Programs

© DFKI - JK

Advantages and Disadvantages of Blackboard

+ Simple integration of complex systems
+ Parallel computations by agents possible
+ Agent components can be easily reused in other systems
+ Scalable
+ Robust

̶ No guarantee of finding a solution
̶ Finding the right control strategy is difficult
̶ No guaranteed response times and solutions
̶ Difficult to test

Architectural Thinking for Intelligent Systems: Architectural Styles20

© DFKI - JK

5. Service-Oriented Architecture (SOA)

 Task for Business + IT

Architectural Thinking for Intelligent Systems: Architectural Styles21

Quelle: Gartner

© DFKI - JK

SOA from an Architectural Perspective
 Specification of services, data formats (messages) and

communication protocols
 Applications as orchestration of services to achieve specific

business goals
– Service provider and service consumer

 http://soa-manifesto.org

Architectural Thinking for Intelligent Systems: Architectural Styles22

© DFKI - JK

Open Group SOA Reference Architecture

Architectural Thinking for Intelligent Systems: Architectural Styles23

© DFKI - JK

Service Eco-system in Enterprise Architecture

Architectural Thinking for Intelligent Systems: Architectural Styles24

Quelle: Open Group, SOA Reference Model

© DFKI - JK

Basic Principles and Technologies
 Wide range of standards

– XML-based data/message
formats

– SOAP/REST as the most
important protocols

 Service-oriented system
– Modular
– Distributed
– Traceable
– Replaceable
– Re-usable

Architectural Thinking for Intelligent Systems: Architectural Styles25

Quelle: A.Thomas Manes, Gartner/Burton

© DFKI - JK

SOA Governance

 SOA governance
crucial for successful
implementation

Architectural Thinking for Intelligent Systems: Architectural Styles26

Quelle: A.Thomas Manes, Gartner/Burton

© DFKI - JK

Amazon Microservices

 Software applications as suites of
independently deployable services

 Based on
– business capability
– automated deployment
– intelligence in endpoints
– decentralized control of

technologies and data
 Communication only through web

service APIs
 Services evolve independently from

each other without coordination
Architectural Thinking for Intelligent Systems: Architectural Styles27

"Truly implement SOA and
decouple services"

more information e.g. on
martinfowler.com

© DFKI - JK

Advantages and Disadvantages of SOA

+ Very flexible architectural style with simple basic model
+ System functionalities encapsulated as reusable assets
+ Binding of services at runtime and lookup in registries

possible
+ Wide range of fully-developed standards
+ Brings together Business and IT
+ Prerequisite for Cloud, Mashups, …
̶ Inherent complexity of open, decentralized systems
̶ Multitude of difficult questions

̶ Service design, interoperability, standards, virtualization
̶ Testing can be difficult, implicit dependencies can make

architectures fragile
Architectural Thinking for Intelligent Systems: Architectural Styles28

© DFKI - JK

6. Clean = Hexagonal = Onion = Ports and Adapters

Architectural Thinking for Intelligent Systems: Architectural Styles29

http://alistair.cockburn.us/Hexagonal+architecture
Bild von http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

Onion Architecture
(Jeffrey Palermo)
Ports and Adapters (Alistair
Cockburn),
Screaming Architecture
(Robert C. Martin),
Data Context Interaction DCI
(James Coplien, Trygve
Reenskaug)
Boundary Control Entity
(Ivar Jacobson)

© DFKI - JK

Main Ideas Behind Onion Architecture

 Major goal: reduce coupling
 Well suited to implement bounded contexts and domain-

driven design
 Infrastructure and data access is moved to the outer layers

of the onion
 Code can depend on layers close to the center, less on

outer layers
 Implements principle of dependency inversion and single

responsibility
– High-level modules independent of the low-level module

implementation details
– An object should do only one thing
– An object should have only one reason to change

Architectural Thinking for Intelligent Systems: Architectural Styles30

© DFKI - JK

Onion and Domain-Driven Design

Architectural Thinking for Intelligent Systems: Architectural Styles31

https://jaxenter.de/wp-content/uploads/2015/05/marbach_zwiebelarchitektur_6.jpg

© DFKI - JK

7. Lambda Architecture for Big Data

Architectural Thinking for Intelligent Systems: Architectural Styles32

© DFKI - JK

A More Detailed Picture of Lambda

Architectural Thinking for Intelligent Systems: Architectural Styles33

https://www.jamesserra.com/archive/2016/08/what-is-the-

© DFKI - JK

Example Lambda Architecture

Architectural Thinking for Intelligent Systems: Architectural Styles34

https://www.jamesserra.com/archive/2016/08/what-is-the-lambda-architecture/

© DFKI - JK

Implementing Lambda Based on Apache Hadoop

35

https://dzone.com
/articles/lambda-
architecture-with-
apache-spark

https://www.jamesserra.com/
archive/2016/08/what-is-the-
lambda-architecture/

© DFKI - JK

Example on AWS

Architectural Thinking for Intelligent Systems: Architectural Styles36

https://aws.amazon.com/de/blogs/big-data/how-smartnews-built-
a-lambda-architecture-on-aws-to-analyze-customer-behavior-
and-recommend-content/

© DFKI - JK

Where can we
place SOA, P2P
and C/S
architectures in
this picture?

Architectural Thinking for Intelligent Systems: Architectural Styles37

Call-and-Return

Object-oriented

Dataflow

Pipes and FiltersBatch/Sequential

Rule-based
System

Data-centric

Main Program
and Subroutine

BlackboardRepository

Layered
Architecture

Explicit CallImplicit Call

Event System

Independent
Components

Communicating
Processes

Virtual
Machine

Interpreter

© DFKI - JK

Working Questions
1. What do we understand by an architectural style?
2. Explain examples of architectural styles, their essential components,

compontent technology, connectors used and constraints that have to
be considered.

3. What the advantages and disadvantages of a given architectural style?
4. Many P2P architectures use a late binding topology. What quality

attributes can require or prevent such a solution?
5. SOA includes dynamic service registry and discovery. Which quality

attributes are affected positively or negatively?
6. How can a layer architecture implement the following tactics for

modifiability: abstract common services, encapsulate, use an
intermediary (reduce coupling)?

Architectural Thinking for Intelligent Systems: Architectural Styles38

© DFKI - JK

Summary

 7 basic architectural styles that are widely applied and can
be observed in many systems

 Any system has an architectural style
– Remember “big ball of mud”

 Each style has advantages and disadvantages

 Applying more than a single architectural slide constitutes a
risk due to increased complexity and potential constraint
violations

 Select the simplest style based on your scenarios

Architectural Thinking for Intelligent Systems: Architectural Styles39

	Architectural Styles
	Agenda
	Tutorial Assignment 9:�
	Importance of Styles and Patterns
	Architectural Pattern
	Architectural Styles
	Architecture Styles (Basic Architectural Patterns)
	1. Layers
	Advantages and Disadvantages of Layers
	Special case of Layers: N-Tier Architectures
	Example: 3-Tier Architecture
	2. Pipes and Filters
	Advantages and Disadvantages of Pipes and Filters
	3a. Client/Server
	Rich versus Thin Client
	Advantages and Disadvantages of Client/Server
	3b. Peer-To-Peer (P2P)
	Advantages and Disadvantages of P2P
	4. Blackboard
	Advantages and Disadvantages of Blackboard
	5. Service-Oriented Architecture (SOA)
	SOA from an Architectural Perspective
	Open Group SOA Reference Architecture
	Service Eco-system in Enterprise Architecture
	Basic Principles and Technologies
	SOA Governance
	Amazon Microservices
	Advantages and Disadvantages of SOA
	6. Clean = Hexagonal = Onion = Ports and Adapters
	Main Ideas Behind Onion Architecture
	Onion and Domain-Driven Design
	7. Lambda Architecture for Big Data
	A More Detailed Picture of Lambda
	Example Lambda Architecture
	Implementing Lambda Based on Apache Hadoop
	Example on AWS
	Where can we place SOA, P2P and C/S architectures in this picture?�
	Working Questions
	Summary

