Al
SAARLANDES ,,C/L”

M) UNIVERSITAT @ 'm
“HUHHUN DES
M

Architectural Styles

Architectural Thinking for Intelligent Systems
Winter 2019/2020

Prof. Dr. habil.Jana Koehler

© DFKI - JK

sl

UMIVERSITAT
DES
SAARLAMDES a k

Agenda

= Architectural styles and patterns

= Commonly used architectural styles

— Layers, Tiers

— Pipes & Filters

— Client/Server

— Peer-to-Peer (P2P)

— Blackboard

— Service-oriented architectures (SOA), Microservices
— Clean/Onion architecture

— Lambda architecture

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT

DES i g I
@ SAARLAMDES -k

Tutorial Assignment 9:

= We select an architectural style as foundation for the
desired system architecture and

= discuss potential alternatives and refinements.

= Views are created to document the architecture at several
levels of abstraction.

3 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT §
DES
SAARLAMDES - L

Importance of Styles and Patterns

Styles and patterns help us to apply proven solutions to our
architecture and to implement architectural principles

implement/ \

make more concrete make more concrete

implement/
make more concrete Architectural
L Styles
similar in concept

use

Architectural
Tactics

prerequisite for

Architectural
Principles

basis for the
realization of

Architectural
Concepts

Architectural
Pattern

basis for the

realization of
use

language of

Architectural
Pattern

Quiality Attribute
Languages

Scenarios Vogel et al.

4 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
EEEEEEEEEE - k

Architectural Pattern

A pattern for software architecture
describes a particular recurring design
problem that arises in specific design
contexts, and presents a well-proven
generic scheme for its solution.

Buschmann et al: Pattern-Oriented Software Architecture
Wiley 1996

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Architectural Styles

= Architectural style as a pattern for the structural organization
of a family of systems (Vogel according to Shaw & Garlan)

= Fundamental structure of a software system

— A set of component types that perform certain functions
at runtime

— A topological arrangement of these components

— A set of connectors that define the communication and
coordination between the components

— A set of semantic constraints that determine how
components and connectors can be interconnected

6 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

-

Architecture Styles (Basic Architectural Patterns)

There are different views in the literature, which basic patterns
are considered as style. These views also evolve over time ...

» We are looking at:

1.
2.
3.

Layers, Tiers
Pipes & Filters

Distributed Systems
a) Client/Server
b) Peer-to-Peer (P2P)

Blackboard (originating from Al)

Service-oriented architectures (SOA)
Microservices

Clean/Onion
Lambda

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

1. Layers

o Presentation
= Elements of a layer have a similar degree Layer
of abstraction
. Application
= A layer offers services to the layer above Layer

— acts as server

= A layer uses only the services of the layer
directly below

— acts as client

Domain
Layer

» Higher layers accessing deeper layers
(below the immediate neighbor) destroy
the architecture!

8 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Advantages and Disadvantages of Layers

+ Easy to understand structural concept
+ Minimizes dependencies between components

+ Layers are independent of each other during development
and operation

+ Changes in one layer affect at most the lower neighboring
layer

— Performance of the system can be negatively affected if
requests have to be forwarded through multiple layers

— Changes in the data model can affect all layers (data
management in the infrastructure, domain, application,
presentation layers)

9 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES A

Special case of Layers: N-Tier Architectures

= Can be seen as a special form of layering, but also as a
specific form of a client/server architecture

= Tiers can communicate more
(A flexibly with their neighbors
[Client } = Bidirectional dependencies violate

N //\ J top-down principle of layer
- _ D architecture

[Web } [Domain } = Strong (access to immediate
| Container Container neighbor only) or flexible

\?/4\ separation of layers (access
- : .

across arbitrary tiers)

Enterprise Corporate = No dependency of lower tiers
Information Datab on presentation tier
System atabase P

\———

N » Integration effort potentially higher

10 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES - k

Example: 3-Tier Architecture

Presentation tier

=GET SALES =GET SALES
The top-most level of the application LU TOTAL L—I
is the user interface. The main function 4 TOTAELREES -
of the interface is to translate tasks —
and results to something the user can L—] |
understand. A — ‘

L]

—

Logic tier

This layer coordinates the
application, processes commands,

Client Tier Application Tier Database Tier

makes logical decisions and - . GET LIST OF ALL @ ADD ALL SALES L. . .
evaluations, and performs % sALES MADE ..~ TOGETHER https://www.itwissen.info/Three-Tier-
i LAST YEAR ® . . .
calculations. It also moves and . A Architektur-three-tier-architecture.html
processes data between the two
surrounding layers.
& SALE |1 g
QUERY SALE 2
Data tier i
Here information is stored and retrieved
from a database or file system. The
information is then passed back to the —
logic tier for processing, and then . o
eventually back to the user. —
—_— 5
— — Storage
Database

https://stackify.com/n-tier-architecture/

11 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

-

2. Pipes and Filters

12

= Sequence of processing units (filters) connected to each

other by data channels (pipes)
— Each filter passes its result directly to the next filter
— Pipes act as connectors between filter components

Data
generation

Data
preparation

Data
compression

Data
storage

= Various coordination models can be implemented

— Decentralised/centralised control

— Pipes passive or active

— Data transfer complete, piecemeal, time-shifted

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

sl

UMIVERSITAT
DES -
SAARLAMDES - L

Advantages and Disadvantages of Pipes and Filters

+ + + +

13

Easy to implement
Easy-to-understand structure
Clearly structured flow of information and control

Powerful pipes can decide to which instance of a filter (load
balancing) or to which filter component (encapsulation) they
pass the data

Filters do not know each other
— Subsequent errors cannot be recognized and handled

Configuration of sophisticated processing chains can be
difficult

Filters only communicate via data objects

— All processing information must be contained in the data or in the
central processing unit

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

3a. Client/Server

= Applications (clients) are

operated locally —
= Services requested by

clients are centrally

managed and made y——

Hub

request

available via a server

—

= Communication is a
simple request-response

—

. Client 1

SCheme Client 2

14 Architectural Thinking for Intelligent Systems: Architectural Styles

answer

N\

Client 3. ..

© DFKI - JK

UMIVERSITAT]
DES ?
SAARLAMDES - \

Rich versus Thin Client

= How is the functionality distributed between client and
server?

— Thin Client

* Only limited functionality directly implemented in the client,
highly dependent on server functionality
Gmail (web browser + web server)

— Rich Client

* Alot of functionality locally in the client, less dependency on the
server
« MS Outlook (Windows Application + Mail Server)

15 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLAMDES = L

Advantages and Disadvantages of Client/Server

+ Centralization of important, compute-intensive or sensitive
computations on the server

+ Thin clients easy to deploy and maintain
+ Rich clients still usable in case of server failure

— High network load (especially with thin clients)
— Distribution of functionality not always easy to decide

— Limits of scaling with very high numbers of clients (and a
single server)

— Scaling is hardly an issue in modern virtualized
infrastructures

16 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES =,
SAARLANDES A

3b. Peer-To-Peer (P2P)

= Equal components (peers) distributed over a network that
perform the role of both client and server and share
resources

= One type of connector («inter peer connection»)
— Usually the internet

= No centralized control, peers are free in communication
(any-to-any)

= Localization of peers by

— decentralized communication (peers exchange individual
lists of known peers with each other) or

— a central service (registry)

17 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

sl

UMIVERSITAT
DES
SAARLAMDES

Advantages and Disadvantages of P2P

18

High reliability (no single point of failure)

Calculation-intensive tasks can be distributed
= Seti@Home

Finding and detecting peers in large networks can be
difficult without a centralized registry

— Potential danger of P2P network decomposition

No obvious solution how to implement error handling
— Who reacts when a peer malfunctions?

No guaranteed response times

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

UMIVERSITAT
DES
SAARLANDES - A

4. Blackboard

= Originally from Artificial Intelligence to solve complex
problems for which no deterministic solution method exists

= Blackboard acts as shared memory holding information
about the state of the problem

= Collaborative problem solving through otherwise
Independent programs (agents)
— No calls between the programs, communication only via blackboard

= Optional control component evaluates solution progress on
the blackboard and activates available programs

h |
| i
I_L I Blackboard as
Programs [+«——> central data
memory

19 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT]
DES
SAARLAMDES - k

Advantages and Disadvantages of Blackboard

Simple integration of complex systems

Parallel computations by agents possible

Agent components can be easily reused in other systems
Scalable

Robust

+ + + + +

— No guarantee of finding a solution

— Finding the right control strategy is difficult

— No guaranteed response times and solutions
— Difficult to test

20 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

5. Service-Oriented Architecture (SOA)
H‘{‘J‘STI'.I:E\

NEW
SYSTEM
BETTER?

SOA: The Savior of IT

Align ICT and
business

Increase agility

Reduce costs

Gain
competitive
advantage

> . ”',"D Z
& ﬁ(ﬁ = Task for Business + IT
: R ;

ONE YEAR IN A IT PROJECT - PAY 23
TO BE SUCCESSFLUL YOU HAVE TO CONVINCE THE BUSINESS Quelle: Gartner

21 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLAMDES = L

SOA from an Architectural Perspective

= Specification of services, data formats (messages) and
communication protocols

= Applications as orchestration of services to achieve specific
business goals

— Service provider and service consumer

Consumer Integration Service Provider
Layer
Input
____________ ..

Deliver Input

Response

= ==cccccccca=a2
Deliver Response

= http://soa-manifesto.org

22 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

sl

UNIVERSITAT P
DES = 4
SAARLAMDES '

Open Group SOA Reference Architecture

23

Consumer

TR, JoaE e
Business

Y e
Frocesses

(C) The Open Group 2009

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Service Eco-system in Enterprise Architecture

24

Development
Services

Business Innovation)& Optimization Services

Provide for better decision-making
with real-time business information

Interaction Services Process Services
Enables collaboration Orchestrate and
between people, automate business
processes & information processes

Information Services

Manages diverse
data and content in a
unified manner

Integrated
environment
for design
and creation
of solution
assets

Partner Services Business App Services

Build on a robust,
scaleable, and secure
services environment

Connect with trading
partners

Infrastructure Services
Optimizes throughput,
availability and performance

Access Services

Facilitate interactions
with existing information
and application assets

IT Service
Management

Manage
and secure
services,
applications
&
resources

Quelle: Open Group, SOA Reference Model

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

Basic Principles and Technologies

= Wide range of standards

— XML-based data/message
formats

— SOAP/REST as the most
Important protocols

Clean separation of concerns
» Businesslogic from infrastructure

» Interface from implementation = Service-oriented SyStem
— Distributed

Loose coupling — Traceable

+ Interoperability — Replaceable

* Decoupledtransactions _ Re-usable

» Shared data, notobjects
) * Mediated interactions

Quelle: A.Thomas Manes, Gartner/Burton

25 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES L
SAARLAMDES -

SOA Governance

= SOA governance
SOA Realities crucial for successful

S implementation
/ thought SOA \ / No one wants to

would solve our
build services
interop problems

mr SENICR\ / -
Systems are

+ aren't being
\ reused & * | N more fragll/'

//‘—

—

Costsare
\ hlghe/

Quelle: A.Thomas Manes, Gartner/Burton

26 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

sl

UMIVERSITAT
DES L
SAARLAMDES -

Amazon Microservices

27

OREILLY"

Software applications as suites of
iIndependently deployable services

Mlcroéwé:f?ilCe
Based on Architecture
— business capability
— automated deployment
— Intelligence in endpoints
— decentralized control of "Truly implement SOA and

technologies and data decouple services"

Communication only through web

service APIs more information e.g. on
martinfowler.com

Services evolve independently from
each other without coordination

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES -
SAARLANDES - A

Advantages and Disadvantages of SOA

+ Very flexible architectural style with simple basic model
+ System functionalities encapsulated as reusable assets

+ Binding of services at runtime and lookup in registries
possible

+ Wide range of fully-developed standards

+ Brings together Business and IT

+ Prerequisite for Cloud, Mashups, ...

— Inherent complexity of open, decentralized systems

— Multitude of difficult questions
— Service design, interoperabillity, standards, virtualization

— Testing can be difficult, implicit dependencies can make
architectures fragile

28 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

-

6. Clean = Hexagonal = Onion = Ports and Adapters

The Clean Architecture

Controllers

Use Cases

| | Enterprise Business Rules
| | Application Business Rules
| | Interface Adapters

| | Frameworks & Drivers

I o

Presenter

Use Case
Qutput Port

A

Use Case
Interactor

% = 1>

Controller

Use Case

Input Port

http://alistair.cockburn.us/Hexagonal+architecture

Onion Architecture

(Jeffrey Palermo)

Ports and Adapters (Alistair
Cockburn),

Screaming Architecture
(Robert C. Martin),

Data Context Interaction DCI
(James Coplien, Trygve
Reenskaug)

Boundary Control Entity
(lvar Jacobson)

Bild von http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

29 Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

sl

UMIVERSITAT
DES
SAARLANDES - A

Main Ideas Behind Onion Architecture

30

Major goal: reduce coupling

Well suited to implement bounded contexts and domain-
driven design

Infrastructure and data access Is moved to the outer layers
of the onion

Code can depend on layers close to the center, less on
outer layers

Implements principle of dependency inversion and single
responsibility
— High-level modules independent of the low-level module
implementation details
— An object should do only one thing
— An object should have only one reason to change

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Onion and Domain-Driven Design

APPLICATION
CORE

nouv:haa

FINLINALSY AN,

SIAN3S

CROSS-CUTTING

https://jaxenter.de/wp-content/uploads/2015/05/marbach_zwiebelarchitektur_6.jpg

31 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

7. Lambda Architecture for Big Data

Data Sources Ingest Prepare Analyze Publish Consume
(normalize, clean, etc.) (stat analysis, ML, etc.) (for programmatic (Alerts, Operational
consumption, Bl/visualization) Stats, Insights)

Stream/Speed Layer (data in motion)

Data Consumption Presentation/Serving
(Ingestion) Layer

Batch Layer (data at rest)

32 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

sl

A More Detailed Picture of Lambda

Data
Sources

Data
Collection

(Analytical) Batch Data Processing

Logfiles

ERP (Reservoir) Batch Information

compute

RDBMS

=3

Social (Analytical) Real-Time Data Processing

Stream/Event .
Processing

[] = Data at Rest

Sensor

Machine

Mobile

([= Datain Motion

Architectural Thinking for Intelligent Systems: Architectural Styles

33

Real-Time Result

Batch Result
Store

Result Store
Query
Engine

Store

Result Store
=)

triva

makes IT easier.

Data
Access

Analytic
Tools

Alerting
Tools

dis

© DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Example Lambda Architecture

DATA SOURCES } INGEST } PREPARE } ANALYZE } PUBLISH p CONSUME

/S

Machine
Learning
Diagnostic 1

—streaming r = 1

=

13 m_m

. ——

————————————————— -

- [== O
Event hubs

Stream Analytics Fy

. S} |

Stream
Data in motion Analytics
Data at rest w W A
Y. .
; P Bl
HDInsight HDInsight Machine e
Learning
Azure SOL
Data Warehouse
Business l i |
apps | | Azure Data Lake Storage
Vehicle | m . |
I Azure Data Factory: Mowe Data, Orchestrate, Schedule, and Maonitor 1
Catalog L =es|
| I 1 |
1 | @' Azure Data Catalog: Register, Annotate, Understand, Discover Data Sats |

https://www.jamesserra.com/archive/2016/08/what-is-the-lambda-architecture/

34 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Implementing Lambda Based on Apache Hadoop

Speed Layer Stream
Processing Incremental https://www.jamesserra.com/
Views archive/2016/08/what-is-the-
lambda-architecture/

—

NoSaL @

ot (@ wasesteeee-

7 Serving Layer Real-time
WEh La BE- S ||||I'“:_|.w

P s Batch View
ERP ¥ Mew Data Streams Batch View

pems/ eow CJ
Legacy @__, Batch Layer

FPre-Compute

All Data Views
GFS and
Google MapReduce Hadoop became a Doug Cloudera

published support added top-level Apache Cutting Hive, Pig, HBase Impala

GFS paper to Nutch project joined were graduated was released
' ' ' Cloudera Fjst ' '

Doug Cutting : Google : Hadoop : : commercial : : httpS://dzone.Com
started working published " sub-project " Cloudera y distribution | Hadoop 2.2 " .
on Nutch | MapReduce) created | was founded | of Hadoop | Wwas released 0 /art|C|eS/|am bd a-
aper out of Nutch ' ' : :

S S . | : ! ! architecture-with-
| | | | | I

| | | |
' : : ' ' ! apache-spark

—O0—0—-O0—-0—"0—"0—-O000000—

35 2002 2003 2004 2005 2006 2008 2008 2009 2009 2010 2012 2013 © DFKI - JK

UMIVERSITAT
DES
SAARLAMDES

Example on AWS

Input

Users

userld, age, gender, location, ...
1234, 28, M, Tokyo, ...

1235, 32, F, Nagano, ...

1240, 18, F, Keyoto, ...

Activities

{ “timestamp™: 1453161447,
“userld": 1234,
“platform™ “jos”,
“edition”: “ja_JP",
“action”; “viewArticle”,

“data” { won
“articleld: 1234, obile
“duration”: 30.2 Client ELB API
}
J
@adjust — ll-'.
Ad Trackers
{ SaaS Tracker

“timestamp”: 1453161447,
“userld”: 1234,

“platform™: “ios”,
“network_name™: “xxxx",
“tracker_name”; “yyyy"

W —

Article
Crawler

Article
Analyzer

1-©— W

AN

NN

Article Metadata

{
“articleld”: 1644991376424448005,
“url”: “http:/lexample.com/news/1”,
“category™ [*SPORTS", “SOCCER"]
}

PipelineDB

Speed

H Manage
Workflow
Airflow - P . —t
. // Reportlng
~x "
> — — —l
DFEStO i
Amazon S3 Amazon EMR Amazon S3
Presto
i
v— 590‘% Streaming —>
Kinesis
Stream \ Spark DynamoDB
on EMR
AWS
/ Lambda
£X .

Output

Chartio
(BI tool)

Other
Applications

Amazon SNS

L=

Slack

36

https://aws.amazon.com/de/blogs/big-data/how-smartnews-built-
a-lambda-architecture-on-aws-to-analyze-customer-behavior-
and-recommend-content/

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

sl

UMIVERSITAT
DES
SAARLAMDES

37

Where can we
place SOA, P2P
and C/S
architectures in
this picture?

Independent
Components

N

Communicating
Processes

Event System

/

AN

Implicit Call

Explicit Call

/ Call-and-
A

Return \

Main Program
and Subroutine

Object-oriented

Layered
Architecture

Data-centric

Dataflow

/

™~

Repository Blackboard

Batch/Sequential

Pipes and Filters

Virtual
Machine

e

AN

Interpreter

Rule-based
System

Architectural Thinking for Intelligent Systems: Architectural Styles

© DFKI - JK

UNIVERSITAT
DES -
SAARLANDES n

Working Questions

1. What do we understand by an architectural style?

Explain examples of architectural styles, their essential components,
compontent technology, connectors used and constraints that have to
be considered.

3. What the advantages and disadvantages of a given architectural style?

4. Many P2P architectures use a late binding topology. What quality
attributes can require or prevent such a solution?

5. SOA includes dynamic service registry and discovery. Which guality
attributes are affected positively or negatively?

6. How can a layer architecture implement the following tactics for
modifiability: abstract common services, encapsulate, use an
iIntermediary (reduce coupling)?

38 Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

sl

UMIVERSITAT
DES
SAARLANDES a A

Summary

39

7/ basic architectural styles that are widely applied and can
be observed in many systems

Any system has an architectural style
— Remember “big ball of mud”

Each style has advantages and disadvantages

Applying more than a single architectural slide constitutes a
risk due to increased complexity and potential constraint
violations

Select the simplest style based on your scenarios

Architectural Thinking for Intelligent Systems: Architectural Styles © DFKI - JK

	Architectural Styles
	Agenda
	Tutorial Assignment 9:�
	Importance of Styles and Patterns
	Architectural Pattern
	Architectural Styles
	Architecture Styles (Basic Architectural Patterns)
	1. Layers
	Advantages and Disadvantages of Layers
	Special case of Layers: N-Tier Architectures
	Example: 3-Tier Architecture
	2. Pipes and Filters
	Advantages and Disadvantages of Pipes and Filters
	3a. Client/Server
	Rich versus Thin Client
	Advantages and Disadvantages of Client/Server
	3b. Peer-To-Peer (P2P)
	Advantages and Disadvantages of P2P
	4. Blackboard
	Advantages and Disadvantages of Blackboard
	5. Service-Oriented Architecture (SOA)
	SOA from an Architectural Perspective
	Open Group SOA Reference Architecture
	Service Eco-system in Enterprise Architecture
	Basic Principles and Technologies
	SOA Governance
	Amazon Microservices
	Advantages and Disadvantages of SOA
	6. Clean = Hexagonal = Onion = Ports and Adapters
	Main Ideas Behind Onion Architecture
	Onion and Domain-Driven Design
	7. Lambda Architecture for Big Data
	A More Detailed Picture of Lambda
	Example Lambda Architecture
	Implementing Lambda Based on Apache Hadoop
	Example on AWS
	Where can we place SOA, P2P and C/S architectures in this picture?�
	Working Questions
	Summary

