
© JK

Artificial Intelligence

Local and Stochastic Search

Prof. Dr. habil. Jana Koehler

Dr. Sophia Saller, M. Sc. Annika Engel

Summer 2020

© JK

Agenda

▪ Searching very large search spaces

▪ Local extrema & plateaus

▪ Randomized search strategies

– Random restarts and moves

– Tabu search

▪ Algorithms

(1) Hill climbing

(2) Simulated Annealing

(3) UCT

(4) Genetic Algorithms

(5) Ant Colony Optimization

Artificial Intelligence: Local and Stochastic Search2

© JK

Recommended Reading

▪ AIMA Chapter 4: Beyond Classical Search

– 4.1 Local Search Algorithms and Optimization Problems
• 4.1.1 Hill-climbing search

• 4.1.2 Simulated annealing

• 4.1.4 Genetic algorithms

▪ Papers:

– A Survey of Monte Carlo Tree Search Methods
C. Browne et. al.

IEEE Transactions on Computational Intelligence and AI in games (2012)

– Finite-time Analysis of the Multiarmed Bandit Problem
P. Auer, N. Cesa-Bianchi, P. Fischer

Machine Learning 47.2-3 (2002): 235-256.

– Bandit based Monte-Carlo Planning
Levente Kocsis and Csaba Szepesvári

European conference on machine learning. Springer (2006)
3 Artificial Intelligence: Local and Stochastic Search

© JK

Searching Very Large Search Spaces

▪ For 𝑛 cables, we have (2𝑛)! potential insertion orders

𝒏 = 𝟐: 4! = 24, 𝒏 = 𝟒𝟎: 10120

▪ No chance to systematically or heuristically explore such

spaces!

4

1 4 5 2 3 6

Artificial Intelligence: Local and Stochastic Search

© JK

Basic Idea of Local Search

5 Artificial Intelligence: Local and Stochastic Search

▪ Start somewhere in the search space

▪ Use an evaluation function for each node

▪ Move towards better evaluated nodes

▪ Sometimes, move elsewhereEvaluation

Current

state

© JK

(1) Hillclimbing

(Steepest Ascent Search, Greedy Local Search)

▪ Neither complete nor optimal

▪ Time complexity: Stops once no better evaluated neighbor

can be found (or it encounters a time out)

▪ Space complexity: 𝑂(𝑏) (current state + neighbors)

▪ In practice, can find good solutions very fast

6 Artificial Intelligence: Local and Stochastic Search

© JK

State-Space Landscape

▪ Plateaus, ridges, local maxima

7 Artificial Intelligence: Local and Stochastic Search

© JK

Local Maxima and Minima

▪ Trap the algorithms in nodes with suboptimal solutions

– once in such a node, all successors have poorer

evaluations

8 Artificial Intelligence: Local and Stochastic Search

© JK

Plateaus

▪ Cause the algorithm to wander around without any direction

– all nodes have equally good evaluations

9

how to escape a

plateau when learning,

training sports, ….

Artificial Intelligence: Local and Stochastic Search

© JK

Ridges

▪ A sequence of local maxima not directly connected to each

other

10 Artificial Intelligence: Local and Stochastic Search

© JK

Escape Techniques

▪ Tabu Search: Add a memory to a local search algorithm to

remember certain moves

– keep a list of forbidden (visited) states

– avoid moves that lead to previously explored regions of

the search space
• short term memory: do not reverse a previous move

– update this list while search progresses

▪ Random Restart: Start over when no progress is made

– do a random restart from a randomly generated initial

state performing many hill climbing searches
• theoretically complete, because it will eventually generate the

goal state as an initial state

▪ Random Walk: “Inject noise” = pick a worse or equal

evaluated node with a certain probability 11

© JK

Sucess of Escape Strategies

▪ Which strategies and parameters are successful depends

on the

– problem class and

– the structure of the search space

▪ Few local maxima and plateaus, random restart hillclimbing

finds good solutions very quickly

▪ Most difficult (NP-hard) problems have an exponential

number of local maxima

12 Artificial Intelligence: Local and Stochastic Search

© JK

Searching the Solution Space

▪ In many applications, we do not care about the path to the

solution

– 8 queens: the correct placement of queens on the board

– cable tree wiring: a robust and fast insertion order

– vacuum world: a plan that cleans all rooms

▪ We can start with some randomly generated (partial)

solution and try to improve it

– take a solution node

– generate its neighbors (if they have better evaluations)

– do not keep information about the search path

13 Artificial Intelligence: Local and Stochastic Search

© JK

Hillclimbing 8 Queens

▪ State: distribution of all 8 queens, one in each column

▪ ℎ: number of pairs of queens attacking each other

▪ Successor: select a column and move the queen to another

square in the same column

14

ℎ = 17
the best successors have

ℎ = 12

hill climbing chooses

randomly among the best

successors

Artificial Intelligence: Local and Stochastic Search

© JK

Another Hill Climbing Strategy

▪ Select a column and move the queen to the square with the

fewest conflicts

15 Artificial Intelligence: Local and Stochastic Search

© JK

Local Minimum in 8 Queens

▪ 19 possible moves

▪ ℎ = 1, no possible move can decrease ℎ

➢ Hillclimbing gets stuck on 86% of all 8 queens problems and

can solve 14%

16

- problem has 1014 states (random

distributions of the 8 queens on an

8x8 board)

- on randomly generated instances,

hillclimbing needs on average 4

steps to find a solution, 3 to get

stuck in local minimum

Artificial Intelligence: Local and Stochastic Search

© JK

Random Restarts and Random Walks on 8 Queens

▪ Success rate of a single run of hillclimbing on 8 queens

– p=14%, take 1/0.14 = 7.14 restarts

– finds a solution under a minute for 3 million queens

▪ Add up to 100 sideway moves (to nodes with equal

evaluation) to 8 queens in a singe run of the algorithm

– hillclimbing can then solve 94% of all instances

– In average, requires 21 steps for a solution and 64 steps

for a failure

➢ Successful local search algorithms combine randomness

(exploration) with following the heuristic (exploitation)

17 Artificial Intelligence: Local and Stochastic Search

© JK

(2) Simulated Annealing

▪ T (a „temperature“) gradually decreases (cools down)

▪ Slow decrease in probability of accepting worse solutions

18 Artificial Intelligence: Local and Stochastic Search

© JK
Artificial Intelligence: Local and Stochastic Search19

https://commons.wikimedia.org/w/index.php?curid=25010763

𝑓 𝑡 = 𝑒−𝑡

https://commons.wikimedia.org/w/index.php?curid=25010763

© JK

(3) UCT: A Stochastic Search Algorithm

▪ L. Kocsis and C. Szepesvári: Bandit based Monte-Carlo

Planning, European Conference on Machine Learning, 2006

20

Upper Confidence

Bounds for Trees

(UCT)

Monte Carlo Tree Search

(MCTS)

Upper Confidence Bounds

(UCB)
+

Artificial Intelligence: Local and Stochastic Search

© JK

Monte Carlo Algorithms

▪ Perform repeated random sampling to determine numerical

estimations of unknown parameters

– developed by Stanislaw Ulam and John von Neumann in

the Manhattan project to run computer simulations for

risk analysis in the 1940s

21 Artificial Intelligence: Local and Stochastic Search

© JK

Estimating PI by Observing Rain Drops on a Board

▪ Area of circle is 𝜋𝑟2

▪ Area of square is 𝑤𝑖𝑑𝑡ℎ2 = (2𝑟)2= 4𝑟2

▪ If we divide the area of the circle by the

area of the square we get Τ𝜋 4

▪ The same ratio can be used between the

number of points within the square and

the number of points within the circle

▪ “Law of large numbers”

22

𝜋 ≈ 4 ∙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
https://www.101computing.net/estimating-

pi-using-the-monte-carlo-method/
Artificial Intelligence: Local and Stochastic Search

© JK

Monte Carlo Tree Search (MCTS)

▪ Method for finding optimal decisions in a given domain by

taking random samples in the decision space and building a

search tree according to the results

– statistical anytime algorithm for which more computing

power generally leads to better performance

– can be used with little or no domain knowledge

▪ Since the 1990s, Monte Carlo ideas are applied to game

playing and planning problems in AI

– the method of choice for very large search spaces

– 10120 and beyond

– many variations and improvements exist

23 Artificial Intelligence: Local and Stochastic Search

© JK

The Basic MCTS Process

▪ A tree is built in an incremental and

asymmetric manner:

▪ For each iteration of the algorithm, a

tree policy is used to find the next node

to be expanded of the current tree

▪ The tree policy attempts to balance

considerations of exploration (look in

areas that have not been well sampled

yet) and exploitation (look in areas

which appear to be promising)

▪ A simulation is run from the selected

node and the search tree is updated

according to the result in the goal state
24

select

node

goal state

simulation:

executing

actions

Artificial Intelligence: Local and Stochastic Search

© JK

Which Node to Select? ► Bandit Problems

▪ Class of sequential decision problems, in which one needs

to choose amongst K actions in order to maximize the

cumulative reward by consistently taking the optimal action

– K arms of a multi-armed bandit slot machine

– choice of action is difficult as the underlying reward distributions

are unknown, and potential rewards must be estimated based on

past observations

▪ Exploitation/Exploration Dilemma

– need to balance the exploitation of the action currently believed to

be optimal with the exploration of other actions that currently

appear suboptimal, but may turn out to be superior in the long run

• Which arm of the bandit to play next?

• UCB 1 Algorithm
• Auer et al: Finite-time Analysis of the Multiarmed Bandit Problem, 2002

25 Artificial Intelligence: Local and Stochastic Search

© JK

Overview of Phases in MCTS-based Algorithms

26

(1)

Selection

(3)

Simulation

(4)

Backpropagation

Artificial Intelligence: Local and Stochastic Search

(2)

Expansion

𝑛

𝑛′1

Which branch is

the most

promising once

we have tried all

at least once?

Expand towards

an arbitrary

unexplored child

in the selected

branch

Randomly

execute actions

until a goal state

(or terminal state)

is reached

Update the

reward towards

the root node

Tree Policy

Default Policy

𝑛′2 𝑛′3

https://www.youtube.com/watch?v=lhFXKNyA0QA

https://www.youtube.com/watch?v=Fbs4lnGLS8M

https://www.youtube.com/watch?v=EGN1KAjtNS4

© JK

UCT Algorithm: Overview

27

last node reached

during the TreePolicy

stage

reward for the goal

state reached by

running the default

policy from state 𝑠(𝑛𝑙)

the action 𝑎 that leads to the best child of the root node 𝑛0
- exact definition of “best” is defined by the implementation

Artificial Intelligence: Local and Stochastic Search

Node count

Sum of all

rewards of paths

through 𝑛0

© JK

Using UCB1 as Tree Policy

▪ How to select the next node 𝑛´ for selection?

– Take the best UCB1 value

28

c is a constant, adjust to lower or

increase the amount of exploration
Artificial Intelligence: Local and Stochastic Search

encourages the exploration

of less visited choices

encourages the exploitation of

higher-reward choices

Remember

Q: reward sum

N: visit count

© JK

(1)+(2) Selection + Expansion: The Tree Policy

29

A node is expandable if it represents a nonterminal state

and has unexplored children

Artificial Intelligence: Local and Stochastic Search

© JK

(3) Simulation: The Default Policy

▪ Execution of actions from the selected node until a goal

state is reached using a default policy

– simply applying actions randomly or

– applying a statistically biased sequence of actions

▪ Once a goal state is reached, the simulation finishes, the

goal state is evaluated and the evaluation is backed up to

the ancestors of the selected node

– No need to evaluate intermediate states!

30 Artificial Intelligence: Local and Stochastic Search

© JK

(4) Backpropagation

▪ Each node’s visit count is incremented, and its Q-value

updated

▪ The reward value may be

– a discrete (win/draw/loss) result or

– a continuous reward value

– Usually normalized to the interval [0,1]

31 Artificial Intelligence: Local and Stochastic Search

© JK

Summary of Algorithm

▪ Download the complete

description of the

algorithm in pseudo code

from CMS > Materials >

Supplementary Materials

Artificial Intelligence: Local and Stoachastic Search32

© JK
33 Artificial Intelligence: Local and Stochastic Search

N(n0) = 0
Q(n0) = 0

n0/s0

Create the root node and select it

(1) SELECTION

© JK
34 Artificial Intelligence: Local and Stochastic Search

N(n1) = 0
Q(n1) = 0

a1 a2

N(n0) = 0
Q(n0) = 0

n0/s0

n1/s1 s2

Apply tree policy: n0 has unexplored children, pick an untried action

further child states

are represented by

dotted lines

(2) EXPANSION

© JK
35 Artificial Intelligence: Local and Stochastic Search

N(n1) = 0
Q(n1) = 0

a1

N(n0) = 0
Q(n0) = 0

n0/s0

n1/s1

a2

s2

(1) SELECTION

© JK
36 Artificial Intelligence: Local and Stochastic Search

terminal state sg

with reward 0.2

sg

N(n0) = 0
Q(n0) = 0

a1

n0/s0

n1/s1
N(n1) = 0
Q(n1) = 0

Run a simulation from the selected, unexplored node

a2

s2

(3) SIMULATION

© JK
37 Artificial Intelligence: Local and Stochastic Search

r = 0.2

N(n0) = 0
Q(n0) = 0

N(n1) = 1
Q(n1) = 0.2

a1

terminal state sg

with reward 0.2

sg

n0/s0

n1/s1

Backpropagate the reward up the path (only to nodes in the tree)

a2

s2

(4) BACKPROPAGATION

© JK
38 Artificial Intelligence: Local and Stochastic Search

N(n0) = 1
Q(n0) = 0.2

N(n1) = 1
Q(n1) = 0.2

a1

terminal state sg

with reward 0.2

sg

r = 0.2

r = 0.2

n0/s0

n1/s1

Backpropagate the reward up the path (only to nodes in the tree)

a2

s2

(4) BACKPROPAGATION

© JK
39 Artificial Intelligence: Local and Stochastic Search

N(n0) = 1
Q(n0) = 0.2

N(n1) = 1
Q(n1) = 0.2

a1

n0/s0

n1/s1

Search Tree after First Round

© JK
40 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

N(n2) = 0
Q(n2) = 0

a1 a2

n0/s0

n1/s1 n2/s2

N(n0) = 1
Q(n0) = 0.2

Expand unexplored child of selected node

(2) EXPANSION

© JK
41 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

N(n2) = 0
Q(n2) = 0

a1 a2

n0/s0

n1/s1 n2/s2

N(n0) = 1
Q(n0) = 0.2

(2) EXPANSION

© JK
42 Artificial Intelligence: Local and Stochastic Search

n2/s2
N(n1) = 1

Q(n1) = 0.2
N(n2) = 0
Q(n2) = 0

a1 a2

terminal state sg

with reward 0.1
sg

n0/s0

n1/s1

N(n0) = 1
Q(n0) = 0.2

Run a simulation from the unexplored node

(3) SIMULATION

© JK
43 Artificial Intelligence: Local and Stochastic Search

r = 0.1

N(n0) = 2
Q(n0) = 0.3

N(n1) = 1
Q(n1) = 0.2

a1 a2

terminal state sg

with reward 0.1
sg

r = 0.1

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

Backpropagate the reward value up the path

(4) BACKPROPAGATION

© JK
44 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

State after the Second Round

Now proceed with 3rd round …

© JK
45 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

Calculate the UCB1 values to decide which node to select

UCB1(n1) =
0.2

1
+ 2

2ln(2)

1
≈ 1.87 UCB1(n2) =

0.1

1
+ 2

2ln(2)

1
≈ 1.77

(1) SELECTION

UCB1(n) =
𝑄(𝑛)

𝑁(𝑛)
+ 𝑐 ∙

2 ln 𝑁

𝑁 𝑛
=

𝑄 𝑛

𝑁 𝑛
+ 2 ∙

2 ln 𝑁

𝑁 𝑛
=

𝑄(𝑛)

𝑁(𝑛)
+ 2

ln 𝑁

𝑁 𝑛

Where we have chosen 𝑐 = 2

© JK
46 Artificial Intelligence: Local and Stochastic Search

UCB1(n1) =
0.2

1
+ 2

ln(2)

1
≈ 1.87 UCB1(n2) =

0.1

1
+ 2

ln(2)

1
≈ 1.77

N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

Select the child with highest UCB1 value

(1) SELECTION

© JK
47 Artificial Intelligence: Local and Stochastic Search

a3 a4

N(n3) = 0
Q(n3) = 0

N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

n0/s0

n1/s1 n2/s2

n3/s3 s4

N(n0) = 2
Q(n0) = 0.3

Expand the selected node

(2) EXPANSION

© JK
48 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 0
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 2
Q(n0) = 0.3

a4

s4

(2) EXPANSION

© JK
49 Artificial Intelligence: Local and Stochastic Search

N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 0
Q(n3) = 0

terminal state sg

with reward 0
sg

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 2
Q(n0) = 0.3

Run a simulation from the unexplored node

a4

s4

(3) SIMULATION

© JK
50 Artificial Intelligence: Local and Stochastic Search

terminal state sg

with reward 0

r = 0

n0/s0
N(n0) = 3

Q(n0) = 0.3

N(n1) = 2
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 1
Q(n3) = 0

r = 0

r = 0
n1/s1 n2/s2

n3/s3

sg

Backpropagate the reward up the path

a4

s4

(4) BACKPROPAGATION

© JK
51 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

State after the Third Round

© JK
52 Artificial Intelligence: Local and Stochastic Search

UCB1(n1) =
0.2

2
+ 2

ln(3)

2
≈ 1.58

UCB1(n2) =
0.1

1
+ 2

ln(3)

1
≈ 2.20

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Calculate the UCB1 values

a4

s4

(1) SELECTION

© JK
53 Artificial Intelligence: Local and Stochastic Search

UCB1(n2) =
0.1

1
+ 2

ln(3)

1
≈ 2.20

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Select the child with highest UCB1 value

a4

s4

(1) SELECTION

UCB1(n1) =
0.2

2
+ 2

ln(3)

2
≈ 1.58

© JK
54 Artificial Intelligence: Local and Stochastic Search

a5

N(n5) = 0
Q(n5) = 0

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Expand selected node

a4

s4

(2) EXPANSION

© JK
55 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 0
Q(n5) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

a4

s4

(2) EXPANSION

© JK
56 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 0
Q(n5) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

terminal state sg

with reward 0.1
sg

a4

s4

(3) SIMULATION

© JK
57 Artificial Intelligence: Local and Stochastic Search

N(v0) = 4
Q(v0) = 0.4

N(n1) = 2
Q(n1) = 0.2

N(n2) = 2
Q(n2) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 1
Q(n5) = 0.1

r = 0.1

r = 0.1

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

terminal state sg

with reward 0.1
sg

r = 0.1

a4

s4

(4) BACKPROPAGATION

© JK
58 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

State after Fourth Round

© JK
59 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

UCB1(n1) =
0.2

2
+ 2

ln(4)

2
≈ 1.77 UCB1(n2) =

0.2

2
+ 2

ln(4)

2
≈ 1.77

Calculate UCB1 values

a4

s4

(1) SELECTION

© JK
60 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

UCB1(n1) =
0.2

2
+ 2

ln(4)

2
≈ 1.77 UCB1(n2) =

0.2

2
+ 2

ln(4)

2
≈ 1.77

Break ties on identical UCB1 values (strategy: leftmost node first)

a4

s4

(1) SELECTION

© JK
61 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

Expand selected node towards unexplored child n4

a4

N(n4) = 0
Q(n4) = 0

n4/s4

(2) EXPANSION

© JK
62 Artificial Intelligence: Local and Stochastic Search

terminal state sg

with reward 0.3
sg

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 0
Q(n4) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

(3) SIMULATION

© JK
63 Artificial Intelligence: Local and Stochastic Search

N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

r = 0.3

r = 0.3

terminal state sg

with reward 0.3

r = 0.3

sg

(4) BACKPROPAGATION

© JK
64 Artificial Intelligence: Local and Stochastic Search

N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

State after Fifth Round

© JK
65 Artificial Intelligence: Local and Stochastic Search

N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

RETURN a1

Depends on strategy, here: action leading to child node with
most visits returned (most visited often means „best“)

Computational Budget Reached

© JK

(4) Genetic Algorithms

▪ So far, all search strategies are based on expanding a

single current state

▪ Why not take 2 parent states and combine it into a new

successor state?

66

current state

successor states

applicable actions

Artificial Intelligence: Local and Stochastic Search

© JK

Basic Ideas in Genetic Algorithms

▪ Evolution seems to be good to produce good solutions

▪ Similar to evolution, search for solutions by sexual

reproduction

– combine 2 genoms by crossing, mutating, and selecting

▪ Ingredients

– Encode a state as a string (gene)

– Fitness function to evaluate states

– Population of states (genes)

▪ https://www.youtube.com/watch?v=Y-XMh-iw07w

67 Artificial Intelligence: Local and Stochastic Search

https://www.youtube.com/watch?v=Y-XMh-iw07w

© JK

Selection, Mutation, and Crossing

▪ Many variation points, e.g.

– how to select

– what type of cross-over (e.g.

where to break)

– probability and type of

mutations

68 Artificial Intelligence: Local and Stochastic Search

© JK

8 Queens solved with Genetic Algorithms

▪ Chain of numbers giving the position of the queens in the

columns

▪ Fitness = number of non-attacking pairs of queens

– the higher the value, the better the configuration

– a solution has value 28

69 Artificial Intelligence: Local and Stochastic Search

© JK

Crossover

70 Artificial Intelligence: Local and Stochastic Search

© JK

Are Genetic Algorithms good for Optimization?

▪ NO! - otherwise, we would all be equal

▪ GAs are suitable to generate a variety of good solutions, but

not in finding the optimal solution

– evolution ensures the survival of the fittest under

changing conditions

71

evolution of sexual species does not result in maximization of fitness, but in

improvement of another important measure which we call mixability: The ability

of a genetic variant to function adequately in the presence of a wide variety of

genetic partners…

Artificial Intelligence: Local and Stochastic Search

© JK

Genetic Algorithm: Learning to Jump over a Ball

72

https://www.youtube.com/watch?v=Gl3EjiVlz_4

Artificial Intelligence: Local and Stochastic Search

https://www.youtube.com/watch?v=Gl3EjiVlz_4

© JK

(5) Ant Colony Optimization

▪ So far, always a single agent searches for a solution …

▪ Why not use several agents and combine their results?

▪ Form of swarm intelligence

– ants deposit pheromone on the ground in order to mark

some favorable path that should be followed by other

members of the colony

▪ In ACO, a number of artificial ants build solutions to an

optimization problem and exchange information on their

quality via a communication scheme that is reminiscent of

the one adopted by real ants

73 Artificial Intelligence: Local and Stochastic Search

© JK

ACO for Traveling Salesperson Problems

At each stage, the ant chooses to move from one city to

another according to some rules:

▪ It must visit each city exactly once

▪ A distant city has less chance of being chosen (the visibility)

▪ The more intense the pheromone trail laid out on an edge between two cities,

the greater the probability that that edge will be chosen

▪ Having completed its journey, the ant deposits more pheromones on all edges it

traversed, if the journey is short

▪ After each iteration, trails of pheromones evaporate

74

➢ Adapts automatically

to changing network

layouts

Artificial Intelligence: Local and Stochastic Search

© JK

An ACO Algorithm

75

Dorigo, Marco, and Gianni Di Caro. "Ant colony optimization: a new meta-heuristic." Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Vol. 2. IEEE, 1999.

Artificial Intelligence: Local and Stochastic Search

© JK

Summary

▪ In very large search spaces heuristic search fails, we thus move to local

and stochastic search methods and focus on anytime algorithms

▪ Stochastic and local search can converge to the optimal solution under

very large resources (time, memory)

▪ UCT is the most popular stochastic search algorithm and has very

successful applications in game playing

▪ Hillclimbing is a simple local search algorithm, which is very powerful

when combined with random walks/moves and restarts

▪ A key to success for stochastic search is to find a good balance between

exploration and exploitation

▪ Meta-heuristic methods (such as genetic algorithms) do not guarantee

optimality

– as a result are not suitable for optimization

– still very popular in practice - they are good for finding a variety of

well-fitting solutions
Artificial Intelligence: Local and Stochastic Search76

© JK

Working Questions

1. How do local and systematic search methods differ?

2. What can we say about the theoretical properties of local search

methods?

3. What techniques exist to escape from local optima and

plateaus?

4. Why does local search often work well in practice?

5. How does hillclimbing work?

6. Can you explain the main phases and computations of N and Q

values of UCT?

77 Artificial Intelligence: Local and Stochastic Search

