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Recommended Reading

▪ AIMA Chapter 7: Logical Agents

▪ Read more in: Handbook of Satisfiability

– Edited by Armin Biere, Marijn Heule, Hans van Maaren, 

Toby Walsh, IOS Press 2009

– Chapters 1-4

– https://epdf.pub/queue/handbook-of-satisfiability.html
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Agenda

▪ Propositional Logic

– Syntax

– Semantics

– Conjunctive and Disjunctive Normal Forms

▪ Reasoning in Propositional Logic

– Basic Terminology

– Resolution

– Davis-Putnam Logemann-Loveland Algorithm

– Conflict-Driven Clause Learning
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Reasoning Capabilites in a Goal-based Agent

(1) Ability to perceive environment

(2) Observations used to make Decisions

Artificial Intelligence: Propositional Logic4
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▪ A grid world with gold and pits

▪ Habitated by the Wumpus

– Dangerous! Guards the gold and can

attack the agent when trying to fetch the

gold (world is underspecified in textbook)

– Noticable by the agent through stench in 

adjacent cells

▪ Agent

– Armed with 1 arrow

– With the goal to find the gold and leave

the cave alive

Towards An Agent´s World Model - The Wumpus World

Artificial Intelligence: Propositional Logic5
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Rules of the Wumpus World

▪ Agent dies if it steps onto cell with Wumpus or cell with pit

▪ Agent can only shoot into direction it is facing

▪ Cave can only be left via cell (1,1)

▪ Wumpus is in a cell next to gold to guard it (we cannot 

enter the field with the gold if the Wumpus is alive)

▪ Locations of pits, gold, and Wumpus are initially unknown 

to the agent

Artificial Intelligence: Propositional Logic6
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Percepts of the Agent

▪ Stench

– Only when on a cell adjacent to the Wumpus

▪ Breeze

– Only when on a cell adjacent to a pit

▪ Glitter

– Only when on the cell with the gold

▪ Bump

– Only when walking into a wall

▪ Scream

– Only when Wumpus hit by arrow

Artificial Intelligence: Propositional Logic7
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Actions of the Agent

▪ Go forward one cell in direction facing

▪ Turn right (by 90 degrees)

▪ Turn left (by 90 degrees)

▪ Grab object in current cell

▪ Shoot arrow

Artificial Intelligence: Propositional Logic8

How can the agent

safely explore the cave 

and find the gold?
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Initial State: What the Agent Knows Initially

▪ Agent is in cell next to the entry of the cave, facing east

▪ Percepts: no stench, no breeze, no glitter

▪ Conclusions of the agent: neighboring cells are safe

– No Wumpus, no pits, no gold

Artificial Intelligence: Propositional Logic9

X

X

How can the agent know that there is no

cell in this direction?

➢ TurnRight, MoveForward

➢ „bump“

We omit the bump actions from the

discussion…
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Move Forward

▪ Moving forward is one of the 2 safe actions

– let us assume the agent moves to cell (2,1)

▪ The agent agent notices a breeze

– a pit must be in a neighboring cell

▪ The agent does not notice glitter or stench

– no Wumpus in a neighboring cell, no gold in this cell

➢ Agent cannot move safely to the next neighboring cells

➢ Need to back up and explore remaining safe cell

Artificial Intelligence: Propositional Logic10
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TurnLeft - TurnLeft - Move Forward - TurnRight - MoveForward

▪ Agent notices no breeze, no glitter, but 

stench

▪ The Wumpus is in the direction the

agent is facing

– Because the agent did not notice

stench earlier

– There is no cell to the left of the

agent (remember we omit the

bumps from the discussion )

▪ There is no pit in the cell right to the

agent

– Because we do not notice a breeze

Artificial Intelligence: Propositional Logic11
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TurnRight - MoveForward

▪ The agent notices no stench

– The Wumpus must be in the upper

cell

▪ TurnLeft -TurnLeft - MoveForward -

TurnRight - Shoot Arrow

➢…

▪ Now the agent can move to the cell with

the gold, grab the gold and leave the

cave

Artificial Intelligence: Propositional Logic12
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Rationally Thinking Agent

➢ Mathematical Logic provides us with a method to formalize

the „thinking“ of the agent

➢Keep a knowledge base represented in logic

➢Automate thinking by a logical calculus
Artificial Intelligence: Propositional Logic13
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The Calculus of Propositional Logic

▪ Syntax

– What are structurally legal statements (formulas) in this 

logic?

▪ Semantics

– What is the meaning of formulas?

▪ Calculus

– Which rules and methods allow us to reason about 

formulas?
• Find out if a formula/set of formulas is true or false?

• Find out if a formula follows from another formula or set of 

formulas?

Artificial Intelligence: Propositional Logic14
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Syntax

Let S be a set of boolean variables (atomic propositions). Then

1. F ( ⏊ ) and T ( ⏉ ) are S-formulas („false“, „true“).

2. Each P ∈ S is a S-formula.

3. If  is a S-formula, then so is ¬𝜑 („negation“).

4. If  and  are S-formulas, then so are

a) φ ∧ 𝜓 („conjunction“)

b) φ ∨ 𝜓 („disjunction“)

c) φ ⇒ 𝜓 („implication“)

d) φ ⇔ 𝜓 („equivalence“).

Atoms and negated atoms are called literals. 

Artificial Intelligence: Propositional Logic15
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BNF Grammar for Propositional Logic

Artificial Intelligence: Propositional Logic16

𝜑 ⇒ 𝜓antecedent

premise

consequent

conclusion

implication / rule / if-then-else statement

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 → 𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 | 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 → 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑄 𝑅 | …

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 → 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 | 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| ¬ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∧ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ∨ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ⇒ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒
| 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 ⇔ 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

Operator Precedence: ¬, ∧, ∨, ⇒, ⇔
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Literal, Clause, and Sentence

▪ Literal

– atom

– negation of an atom

Examples: 𝑥1, ¬𝑥1

▪ Clause

– disjunction of literals

Examples: 𝑥1 ∨ 𝑥2 , ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3

▪ Sentence

– any atomic (literal) or complex proposition/sentence

Examples: 𝑥1 ∨ 𝑥2 ⇒ ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 , 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ ¬𝑥3

Artificial Intelligence: Propositional Logic17
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Semantics

▪ Defines the rules for determining the truth of a proposition/ 

sentence with respect to an interpretation

▪ The interpretation assigns truth values to every proposition

Let S be a set of propositions. An interpretation I of S, also 

called a truth assignment, is a function

Artificial Intelligence: Propositional Logic18

𝐼 ∶ 𝛴 → 0, 1
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Definition of I

Artificial Intelligence: Propositional Logic19

𝐼 ⊨ ⏉

𝐼 ⊭ ⏊

𝐼 ⊨ 𝑃 iff 𝑃𝐼 = true

𝐼 ⊨ ¬ 𝜑 iff 𝐼 ⊭ 𝜑

𝐼 ⊨ 𝜑 ∧ 𝜓 iff 𝐼 ⊨ 𝜑 and 𝐼 ⊨ 𝜓

𝐼 ⊨ 𝜑 ∨ 𝜓 iff 𝐼 ⊨ 𝜑 or 𝐼 ⊨ 𝜓

𝐼 ⊨ 𝜑 ⇒ 𝜓 iff if 𝐼 ⊨ 𝜑, then 𝐼 ⊨ 𝜓

𝐼 ⊨ 𝜑 ⇔ 𝜓 iff 𝐼 ⊨ 𝜑 if and only if 𝐼 ⊨ 𝜓

If 𝐼 ⊨ ⏉, we say that 𝐼 satisfies (entails) 𝜑 or that 𝐼 is a model of 𝜑

The set of all models (all satisfying interpretations) of 𝜑 is denoted by 𝑀(𝜑)
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Alternative Representation:

Truth Table for Basic Connectives

Artificial Intelligence: Propositional Logic20

𝝋 𝝍 ¬𝝋 𝝋 ∧ 𝝍 𝝋 ∨ 𝝍 𝝋 ⇒ 𝝍 𝝋 ⇔ 𝝍

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T
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Example: Does ? 

Artificial Intelligence: Propositional Logic21

1 1 0 0

1 0

I  =

111

01

0

0

0

0

0 No it does not!
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Terminology

Artificial Intelligence: Propositional Logic22

A Knowledge Base (KB) is a set (conjunction) of formulas.

An interpretation is a model of KB if 𝐼 ⊨ 𝜑 for all 𝜑 ∈ KB.

A formula 𝜑 is:

• satisfiable iff there exists 𝐼 that satisfies 𝜑

• unsatisfiable iff 𝜑 is not satisfiable

• falsifiable iff there exists 𝐼 that doesn’t satisfy 𝜑

• valid iff 𝐼 ⊨ 𝜑 holds for all 𝐼. We also call 𝜑 a tautology

Formulas 𝜑 and 𝜓 are equivalent (𝜑 ≡ 𝜓) iff 𝑀 𝜑 = 𝑀(𝜓)
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Important Equivalences

Artificial Intelligence: Propositional Logic23

1. ¬¬𝜑 ≡ 𝜑

2. ¬ 𝜑 ∧ 𝜓 ≡ ¬𝜑 ∨ ¬𝜓 (de Morgan)

3. ¬ 𝜑 ∨ 𝜓 ≡ ¬𝜑 ∧ ¬𝜓 (de Morgan)

4. 𝜑 ⇔ 𝜓 ≡ 𝜑 ⇒ 𝜓 ∧ 𝜓 ⇒ 𝜑

5. 𝜑 ⇒ 𝜓 ≡ ¬𝜑 ∨ 𝜓

6. 𝜑 ∧ 𝜓 ∨ 𝜒 ≡ 𝜑 ∧ 𝜓 ∨ 𝜑 ∧ 𝜒 (distributivity)

7. 𝜑 ∨ 𝜓 ∧ 𝜒 ≡ 𝜑 ∨ 𝜓 ∧ 𝜑 ∨ 𝜒 (distributivity)

8. 𝜑 ∧ ¬𝜑 ≡ F

9. 𝜑 ∨ ¬𝜑 ≡ T
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Normal Forms

▪ A formula is in conjunctive normal form (CNF) if it consists 

of a conjunction of disjunctions of literals:

▪ A formula is in disjunctive normal form (DNF) if it consists of 

a disjunction of conjunctions of literals:

Artificial Intelligence: Propositional Logic24

ሥ

𝑖=1

𝑛

ሧ

𝑗=1

𝑚𝑖

𝑙𝑖,𝑗

ሧ

𝑖=1

𝑛

ሥ

𝑗=1

𝑚𝑖

𝑙𝑖,𝑗
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Example

▪ In Conjunctive Normal Form and Disjunctive Normal Form

= ¬ 𝑃 ∨ 𝑄 ∧ ¬𝑄 ∨ 𝑃 (replace implication)

= ¬ 𝑃 ∨ 𝑄 ∨ ¬¬𝑄 ∨ 𝑃 (move negation inward)

= ¬𝑃 ∧ ¬𝑄 ∨ 𝑄 ∨ 𝑃 ((re-)move negation inward)

= ¬𝑃 ∧ ¬𝑄 ∨ 𝑄 ∨ 𝑃 DNF

= ¬𝑃 ∨ 𝑄 ∧ ¬𝑄 ∨ 𝑄 ∨ 𝑃 (distribute conjunction)

= ¬𝑃 ∨ 𝑄 ∨ 𝑃 ∧ ¬𝑄 ∨ 𝑄 ∨ 𝑃 CNF

Artificial Intelligence: Propositional Logic25

𝑃 ∨ 𝑄 ∧ ¬𝑄 ⇒ 𝑃

Can be simplified further to T ∨ 𝑄 ∧ T ∨ 𝑃 which is a tautology
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Knowledge Base of the Wumpus World

Artificial Intelligence: Propositional Logic26

𝐴11 ∧ ¬ 𝐵11 ∧ ¬ 𝑆11 → 𝑂𝐾21 ∧ 𝑂𝐾12? 

𝐴11 ∧ ¬𝐵11 ∧ ¬𝑆11
𝐴11 → 𝑉11, …
𝑆11 → 𝑊12 ∨ 𝑊21, 𝑆12 → …
𝐵11 → 𝑃12 ∨ 𝑃21, 𝐵12 → …
¬ 𝑆11 → ¬𝑊12 ∧ ¬𝑊21, …
¬ 𝐵11 → ¬𝑃12 ∧ ¬𝑃21, …

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus
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A knowledge base 𝐾𝐵 entails a formula 𝜑, 𝐾𝐵 ⊨ 𝜑, (𝜑 follows 

from 𝐾𝐵) iff 𝜑 is true in all models of 𝐾𝐵.

𝑀 ሥ
𝜓∈𝐾𝐵

⊆ 𝑀 𝜑

Contradiction Theorem: 𝐾𝐵 ⊨ 𝜑 if and only if 𝐾𝐵 ∪ ¬𝜑 is 

unsatisfiable.

Proof:

“⟹”: Assumption 𝐾𝐵 ⊨ 𝜑
Then for any 𝐼 where 𝐼 ⊨ 𝐾𝐵 we have 𝐼 ⊨ 𝜑 and 

thus, 𝐼 ⊭ ¬𝜑.
“⟸”: Assumption 𝐾𝐵 ∪ ¬𝜑 ⊢ ⊥

Then for any 𝐼 where 𝐼 ⊨ 𝐾𝐵 we have 𝐼 ⊭ ¬𝜑 and 

thus, 𝐼 ⊨ 𝜑.

Entailment

Artificial Intelligence: Propositional Logic27
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Calculus

▪ How can we find out 𝐾𝐵 ⊨ 𝜑?

1. By the truth table method, but 𝑛 boolean variables require 

to consider 2𝑛 truth value combinations

2. Using the contradiction theorem, we can try to derive with 

the help of inference rules (a „calculus“) that

Artificial Intelligence: Propositional Logic28

𝐾𝐵 ∪ ¬𝜑 ⊨ ⏊
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Inference Rule - Calculus - Deduction

▪ An inference rule (tautology) specifies how to derive true

formulas (logical consequences) from existing true formulas

(premises)

▪ A calculus is a set of inference rules to perform deductive

reasoning (deduction)

▪ A derivation is a sequence of applied inference rules

Artificial Intelligence: Propositional Logic29

Example: modus ponens

𝜑 ∧ 𝜑 ⇒ 𝜓 ⇒ 𝜓,
𝜑, 𝜑 ⇒ 𝜓

𝜓
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Soundness and Completeness of a Calculus

Artificial Intelligence: Propositional Logic30

A formula 𝜑 can be derived from a knowledge base 𝐾𝐵 using a 

calculus ℛ

𝐾𝐵 ⊢ℛ 𝜑

iff there is a derivation using rules from ℛ ending in 𝜑.

Soundness: ℛ is sound iff all derivable formulas follow logically:

if 𝐾𝐵 ⊢ℛ 𝜑 then 𝐾𝐵 ⊨ 𝜑.

Completeness: ℛ is complete if all formulas that follow logically 

are derivable:

if 𝐾𝐵 ⊨ 𝜑, then 𝐾𝐵 ⊢ℛ 𝜑.

If ℛ is sound and complete: 𝐾𝐵 ⊨ 𝜑 ⇔ 𝐾𝐵 ⊢ℛ 𝜑.
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▪ Unit resolution takes a clause - a disjunction of literals - and 

a single literal (the unit clause) and produces a new clause 

(the resolvent)

▪ The literal 𝑙𝑖 and the unit clause 𝑚 are complementary 

literals (one is the negation of the other)

▪ The resolvent contains a single copy of all literals except 𝑙𝑖

and 𝑚

– note that a unit clause 𝑚 remains available in 𝐾𝐵 for 

further resolution steps

The Resolution Calculus

Artificial Intelligence: Propositional Logic31

𝑙1 ∨ ⋯ ∨ 𝑙𝑘 , 𝑚

𝑙1 ∨ ⋯ ∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ⋯ ∨ 𝑙𝑘
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Generalized Resolution Rule

▪ We can resolve between non-unit clauses containing 

complementary literals 𝑙𝑖 and 𝑚𝑗

▪ Resulting clause contains only one copy of each literal

▪ ATTENTION: you can only resolve a single pair of 

complementary literals in each resolution step

Artificial Intelligence: Propositional Logic32

Correct:
𝐴∨𝐵 ∧¬𝐵

𝐴

𝐴∨𝐵∨𝑃∨𝑄 ∧ ¬𝑃∨¬𝑄

𝐴∨𝐵∨𝑃∨¬𝑃

Incorrect:
𝐴∨𝐵∨𝑃∨𝑄 ∧ ¬𝑃∨¬𝑄

𝐴∨𝐵

𝑙1 ∨ ⋯ ∨ 𝑙𝑘 , 𝑚1 ∨ ⋯ ∨ 𝑚𝑛

𝑙1 ∨ ⋯ ∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ⋯ ∨ 𝑙𝑘 ∨ 𝑚1 ∨ ⋯ ∨ 𝑚𝑗−1 ∨ 𝑚𝑗+1 ∨ ⋯ ∨ 𝑚𝑛

the correct resolvents are:  𝐴 ∨ 𝐵 ∨ 𝑄 ∨ ¬𝑄 and 𝐴 ∨ 𝐵 ∨ 𝑃 ∨ ¬𝑃 ! (both are tautologies)
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Clause Notation for CNF

▪ Apply a set-like notation to formulas in CNF

𝐴 ∨ 𝐵 ∨ 𝑃 ∨ 𝑄 ∧ ¬𝑃 ∨ ¬𝑄

becomes

𝐴, 𝐵, 𝑃, 𝑄 , ¬𝑃, ¬𝑄 in clause notation 

𝐴 ∨ 𝐵 ∨ 𝑃 ∧ ¬𝑃

becomes

𝐴, 𝐵, 𝑃 , ¬𝑃 in clause notation 

There is no clause notation for DNF (using ; or whatever )  

Artificial Intelligence: Propositional Logic33
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Example

Artificial Intelligence: Propositional Logic34

𝐾𝐵 = (𝑄 ⇒ ¬𝑃) ∧ (¬𝑃 ⇒ (¬𝑄 ∨ ¬𝑅 ∨ ¬𝑆))(¬𝑄 ⇒ ¬𝑆) ∧ (¬𝑅 ⇒ ¬𝑆)
 = ¬𝑆

We show by resolution that 𝐾𝐵 ∪ ¬𝜑 ⊨⊥

Transform into CNF:

𝐾𝐵 = (¬𝑄 ∨ ¬𝑃) ∧ (𝑃 ∨ ¬𝑄 ∨ ¬𝑅 ∨ ¬𝑆) ∧ (𝑄 ∨ ¬𝑆) ∧ (𝑅 ∨ ¬𝑆)

We use compact clause notation and add the negation of 𝜑
to 𝐾𝐵:

𝐾𝐵 = {¬𝑄, ¬𝑃} , {𝑃, ¬𝑄, ¬𝑅, ¬𝑆} , {𝑄, ¬𝑆} , {𝑅, ¬𝑆} , {𝑆}
𝐾𝐵´ = {¬𝑄, ¬𝑃} , {𝑃, ¬𝑄, ¬𝑅} , {𝑄} , {𝑅} , {𝑆}
𝐾𝐵´´ = {¬𝑃} , {𝑃, ¬𝑅} , {𝑄} , {𝑅} , {𝑆}
𝐾𝐵´´´ = {¬𝑃} , {𝑃} , {𝑄} , {𝑅} , {𝑆}
𝐾𝐵´´´´ =⊥=◻= („◻“ stands for the empty clause representing False)
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The Algorithm

Artificial Intelligence: Propositional Logic35
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An Unsound and Incorrect Resolution Step

▪ Applying both literals at once yields the empty clause

▪ However, the KB is satisfiable and not unsatisfiable !!!

▪ Let us construct a satisfying interpretation for KB

Artificial Intelligence: Propositional Logic36

𝐾𝐵 = ¬𝑄, ¬𝑃 , 𝑄, 𝑃 ¬𝑄, ¬𝑃 , 𝑄, 𝑃

1001

11

1

𝐾𝐵 = ¬𝑄, ¬𝑃 , 𝑄, 𝑃 =◻ ???

two possible resolvents: 

¬𝑃, 𝑃 ¬𝑄, 𝑄
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Theorem: Refutation Completeness

𝐾𝐵 is unsatisfiable if and only if K𝐵 ⊢◻.

Proof of Soundness (if):

Follows directly from the contradiction theorem. (𝐾𝐵 ∪ ¬ ◻ ⊨ ⏊)

Proof of Completeness (only if):

It suffices to show that if 𝐾𝐵 ⊬ ◻ then 𝐾𝐵 is satisfiable.

We prove this by induction on Σ (number of atoms in 𝐾𝐵).

We define 𝑅𝐶(𝐾𝐵) to be the set of all clauses that can be 

derived from 𝐾𝐵, so 𝑅𝐶 𝐾𝐵 =  | 𝐾𝐵 ⊢ .

Note, that 𝐾𝐵 ⊬◻ is equivalent to ◻ ∉ 𝑅𝐶 𝐾𝐵 , so we assume 

◻ ∉ 𝑅𝐶 𝐾𝐵 and want to find a valid interpretation of 𝐾𝐵.
Artificial Intelligence: Propositional Logic37
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Base Case: 𝚺 = 𝟎

Since ◻ ∉ 𝑅𝐶 𝐾𝐵 , 𝐼 = ∅ is a valid interpretation of 𝐾𝐵, so 𝐾𝐵
is satisfiable as required.

Inductive Hypothesis: The claim holds for Σ = 𝑛.

Inductive Step:

Suppose Σ = 𝑛 + 1 and Σ = 𝑃1, … , 𝑃𝑛+1 . Further, let Σ′ =
𝑃1, … , 𝑃𝑛 and 𝑅𝐶′(𝐾𝐵) be the set of all clauses in 𝑅𝐶(𝐾𝐵) that 

do not contain 𝑃𝑛+1.

By the induction hypothesis, there exists an interpretation 𝐼′
such that 𝐼′ satisfies all clauses in 𝑅𝐶′(𝐾𝐵).

We now claim that either 𝐼′ ∪ 𝑃𝑛+1 → 0 or 𝐼′ ∪ 𝑃𝑛+1 → 1 is a 

valid interpretation of 𝑅𝐶(𝐾𝐵).

Artificial Intelligence: Propositional Logic38
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For contradiction, suppose none of 𝐼′ ∪ 𝑃𝑛+1 → 0 or 𝐼′ ∪
𝑃𝑛+1 → 1 is a valid interpretation of 𝑅𝐶(𝐾𝐵).

Then there must be two clauses, 𝐶, 𝐷 ∈ 𝑅𝐶(𝐾𝐵) such that 𝐶 is 

not satisfied by 𝐼′ ∪ 𝑃𝑛+1 → 0 and 𝐷 is not satisfied by 𝐼′ ∪
𝑃𝑛+1 → 1 . 

Since 𝐼′ is a valid interpretation of 𝑅𝐶′(𝐾𝐵), both 𝐶 and 𝐷 must 

contain 𝑃𝑛+1. Hence, 𝑃𝑛+1 ∈ 𝐶 and ¬𝑃𝑛+1 ∈ 𝐷.

Let 𝑅 be the resolvent of 𝐶 and 𝐷. Then 𝑅 ∈ 𝑅𝐶(𝐾𝐵) and 𝑅
does not use 𝑃𝑛+1, so 𝐼′ satisfies 𝑅.

As 𝑅 is satisfied under 𝐼′, any clause 𝑅 ∪ 𝑋 (with 𝑋 being an 

arbitrary atom or clause) is satisfied by 𝐼′ independently of the 

interpretation of 𝑋.

Consequently, extending 𝐼′ to 𝐼′ ∪ 𝑃𝑛+1 → 0 or 𝐼′ ∪ 𝑃𝑛+1 → 1
satisfy both 𝑅 ∪ 𝑃𝑛+1 and 𝑅 ∪ ¬𝑃𝑛+1 and also satisfies 𝐷, 𝐶 ∈
𝑅𝐶(𝐾𝐵). This is a contradiction.

39
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If ◻ ∉ 𝑅𝐶 𝐾𝐵 , we can find a satisfying assignment by greedy 

value selection as follows:

▪ Start with an empty interpretation 𝐼 = ∅

▪ From the proof (case 𝑛 = 1):

– either 𝑃1 → 0 or 𝑃1 → 1 satisfies the set of all clauses in 𝑅𝐶(𝐾𝐵)
that do not contain 𝑃2, … , 𝑃𝑛

– So we select the “good” interpretation for 𝑃1 and add it to 𝐼

▪ Once we have selected values for 𝑃1, … , 𝑃𝑘−1 :

From the proof (case 𝑛 = 𝑘 − 1):

– either I ∪ 𝑃𝑘 → 0 or I ∪ 𝑃𝑘 → 1 satisfies the set of all clauses in 

𝑅𝐶(𝐾𝐵) that do not contain 𝑃𝑘+1, … , 𝑃𝑛

– Select the “good” value for 𝑃𝑘 and add it to 𝐼

▪ Once we have reached 𝑛:

– the interpretation 𝐼 we have found, satisfies the set of all clauses in 

𝑅𝐶 𝐾𝐵 , so 𝐼 is a satisfying assignment

Note that we consider all clauses in the deductive closure of  𝐾𝐵, which can have size

exponential in the size of the 𝐾𝐵. Satisfiability is an NP-hard problem.
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Resolution-Based Thinking in the Wumpus World

Artificial Intelligence: Propositional Logic41

Percepts:

a) ¬𝐵11
b) ¬𝑆11

Rules:
1) 𝑆11 → 𝑊12 ∨ 𝑊21
2) 𝐵11 → 𝑃12 ∨ 𝑃21
3) ¬𝑆11 → ¬𝑊11 ∧ ¬𝑊12 ∧ ¬𝑊21
4) ¬𝐵11 → ¬𝑃11 ∧ ¬𝑃12 ∧ ¬𝑃21
5) ¬𝑊12 ∧ ¬𝑃12 → 𝑂𝐾12
6) ¬𝑊21 ∧ ¬𝑃21 → 𝑂𝐾21

To show: 7) 𝑂𝐾21 ∧ 𝑂𝐾12
𝐾𝐵 =
¬𝐵11 , ¬𝑆11 , ¬𝑆11, 𝑊12, 𝑊21 , ¬𝐵11, 𝑃12, 𝑃21 , (percepts a,b, rules1,2)

{𝑆11, ¬𝑊11}, {𝑆11, ¬𝑊12}, {𝑆11, ¬𝑊21},                                (rule 3 as clause set)

𝐵11, ¬𝑃11 , 𝐵11, ¬𝑃12 , 𝐵11, ¬𝑃21 , (rule 4 as clause set) 

𝑊12, 𝑃12, 𝑂𝐾12 , 𝑊21, 𝑃21, 𝑂𝐾21 , (rules 5 and 6 as clause set) 

{¬𝑂𝐾12, ¬𝑂𝐾21} (negation of 7 and 8)

rewriting rule 3: ¬𝑆11 → ¬𝑊11 ∧ ¬𝑊12 ∧ ¬𝑊21 ⇔ 𝑆11 ∨ (¬𝑊11 ∧ ¬𝑊12 ∧ ¬𝑊21)
⇔ (𝑆11 ∨ ¬𝑊11) ∧ (𝑆11 ∨ ¬𝑊12) ∧ (𝑆11 ∨ ¬𝑊21)
rewriting rule 5: ¬𝑊12 ∧ ¬𝑃12 → 𝑂𝐾12 ⇔ ¬ 𝑊12 ∨ 𝑃12 → 𝑂𝐾12
⇔ (𝑊12 ∨ 𝑃12) ∨ 𝑂𝐾12
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{¬𝐵11} , {¬𝑆11} , {¬𝑆11, 𝑊12, 𝑊21} , {¬𝐵11, 𝑃12, 𝑃21} ,
{¬𝑊11} , {¬𝑊12} , {¬𝑊21} ,
{¬𝑃11} , {¬𝑃12} , {¬𝑃21} ,
{𝑊12, 𝑃12, 𝑂𝐾12} , {𝑊21, 𝑃21, 𝑂𝐾21} , {¬𝑂𝐾12, ¬𝑂𝐾21}

Resolution Steps

Artificial Intelligence: Propositional Logic42

{¬𝐵11} , {¬𝑆11} , {¬𝑆11, 𝑊12, 𝑊21} , {¬𝐵11, 𝑃12, 𝑃21} ,
{𝑆11, ¬𝑊11} , {𝑆11, ¬𝑊12} , {𝑆11, ¬𝑊21} ,
{𝐵11, ¬𝑃11} , {𝐵11, ¬𝑃12} , {𝐵11, ¬𝑃21} ,
{𝑊12, 𝑃12, 𝑂𝐾12} , {𝑊21, 𝑃21, 𝑂𝐾21} , {¬𝑂𝐾12, ¬𝑂𝐾21}

{¬𝐵11} , {¬𝑆11} , {¬𝑆11, 𝑊12, 𝑊21} , {¬𝐵11, 𝑃12, 𝑃21} ,
{¬𝑊11} , {¬𝑊12} , {¬𝑊21} ,
{¬𝑃11} , {¬𝑃12} , {¬𝑃21} ,
{𝑃12, 𝑂𝐾12} , {𝑃21, 𝑂𝐾21} , {¬𝑂𝐾12, ¬𝑂𝐾21}

{𝑂𝐾12} , {𝑂𝐾21} , {¬𝑂𝐾12 , ¬𝑂𝐾21}

Resolution on unit clauses

{¬𝐵11} , {¬𝑆11}

Resolution on unit clauses

{¬𝑊12} , {¬𝑊21}

Resolution on unit clauses

{¬𝑃12} , {¬𝑃21}

Resolution on unit clauses

𝑂𝐾12 , 𝑂𝐾21

(one of it would be sufficient)
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Incompleteness of Resolution

Artificial Intelligence: Propositional Logic43

(𝑃 ∨ 𝑄) ∧ (¬𝑄 ∨ 𝑅) ⊨ (𝑃 ∨ 𝑅 ∨ 𝑆) is true and we can prove

it by showing (𝑃 ∨ 𝑄) ∧ (¬𝑄 ∨ 𝑅) ∧ ¬(𝑃 ∨ 𝑅 ∨ 𝑆) ⊢ ◻ by

resolution

But we cannot derive (𝑃 ∨ 𝑅 ∨ 𝑆) directly from the sentence

using the resolution rule

{𝑃, 𝑄} , {¬𝑄, 𝑅} , { ¬𝑃} , {¬𝑅} , {¬𝑆}

𝑃, 𝑅 , ¬𝑃 , ¬𝑅 , ¬𝑆

{𝑅} , ¬𝑅 , ¬𝑆

◻

(KB in clause form, negation of claim

in clause form)
resolution on 𝑄

resolution on 𝑃

resolution on 𝑅
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SAT Checking

▪ Is an (arbitrary) formula 𝜑 satisfiable?

– Yes, if we can construct a model of 𝜑

– Find a truth assignment (a satisfying interpretation) for

the boolean variables in 𝜑 making the formula true

– If no model exists, return unsatisfiable

▪ If K𝐵 ∪ {¬𝜑} is unsatisfiable, then K𝐵 ⊨ 𝜑 (by the

contradiction theorem)

– SAT checking can be used like a calculus

Artificial Intelligence: Propositional Logic44
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Characterization of Clauses (Disjunction of Literals)

▪ Unsatisfied if all its literals are assigned value 0 (false)

▪ Satisfied if at least one of its literals is assigned value 1 (true)

▪ Unit if all literals but one are assigned value 0, and the 

remaining literal is unassigned

- This remaining literal must be assigned 1

▪ Unresolved if it is neither unsatisfied, nor satisfied, nor unit

Artificial Intelligence: Propositional Logic45
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▪ A clause is true if at least one literal is true

▪ A conjunction of clauses (a sentence) is false if at least one 

clause is false, which occurs when each of its literals is false

– even if other literals/clauses do not yet have truth values

– sentence can be judged false/true before model is 

completely constructed

➢ Early termination avoids examination of entire subtrees in 

the search space when constructing an interpretation

Key Observations About Clauses - Early Termination

Artificial Intelligence: Propositional Logic46

(𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)
is true if 𝐴 is true, regardless of the values of 𝐵 and 𝐶
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Key Observations about Clauses - Pure Symbol Heuristic

▪ A boolean variable can occur positively or negatively in a set

of clauses

– Some symbols are „pure“ occuring only in one of the

forms (with the same „sign“)

▪ If a sentence has a model, then it has a model with the pure 

symbols assigned so as to make their literals true, because 

doing so can never make a clause false (𝐴 true, ¬𝐵 true)

➢ Pure symbol heuristic allows an algorithm to quickly

detect true clauses
Artificial Intelligence: Propositional Logic47

(𝐴 ∨ ¬𝐵) ∧ (¬𝐵 ∨ ¬𝐶) ∧ (𝐶 ∨ 𝐴)

𝐴 is pure (only the positive literal appears)

𝐵 is pure (only the negative literal appears)

𝐶 is impure
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Key Observations about Clauses - Unit Clause Heuristic

▪ Generalize the notion of unit clauses from clauses with a 

single literal to clauses where all but one are assigned false

– The remaining unassigned literal must be true

➢ Use unit clause heuristic for unit propagation

– Cascade of forced truth value assignments because 

each unit clause must be true for the overall knowledge 

base (or formula) to be true

Artificial Intelligence: Propositional Logic48

(¬𝐵 ∨ ¬𝐶)

Simplifies to ¬𝐶 with 𝐵 = true

𝐶 must thus be false for ¬𝐶 to be true



©  JK 

Davis-Putnam Logemann-Loveland (DPLL) Algorithm

Artificial Intelligence: Propositional Logic49

splitting rule
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𝑄=false

Example

Artificial Intelligence: Propositional Logic50

𝑲𝑩 = {{𝑷, 𝑸, ¬𝑹} , {¬𝑷, ¬𝑸} , {𝑹} , {𝑷, ¬𝑸}}

unit clause 𝑅=true

unit propagation

{{𝑷, 𝑸}, {¬𝑷, ¬𝑸} , {𝑷, ¬𝑸}}

¬𝑅 is false ⇒
remainder of clause

must be true

no pure symbols

Split on 𝑃

{{¬𝑸}}{ 𝑸 , {¬𝑸}}

unit resolution: ◻

➢unsatisfying interpretation!

⟹ ¬𝑄
must be true

unit propagation: KB = {}

➢satisfying interpretation!

➢𝑅, 𝑃 = 𝑇, 𝑄 = 𝐹 is a model!

⟹ {𝑄}
must be true 𝑃=false 𝑃=true
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Example

Artificial Intelligence: Propositional Logic51

K𝐵 = {{¬𝑃, ¬𝑄} , {𝑃, ¬𝑄, ¬𝑅, ¬𝑆} , {𝑅, ¬𝑆} , {𝑄, ¬𝑆} , {𝑆}}

unit propagation: 𝑆 = true

K𝐵 = ¬𝑃, ¬𝑄 , 𝑃, ¬𝑄, ¬𝑅 , 𝑅 , 𝑄

unit propagation: 𝑄 = true

K𝐵 = ¬𝑃 , 𝑃, ¬𝑅 , 𝑅

unit propagation: 𝑅 = true

K𝐵 = ¬𝑃 , 𝑃

= ◻

➢unsatisfiable!
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Soundness and Incompleteness of Unit Propagation (UP)

▪ Soundness

– Need to show: If K𝐵′ can be derived from 𝐾𝐵 by UP, then K𝐵 ⊨ 𝐾𝐵′

– Yes, because any derivation made by unit propagation can also be 

made by (full) resolution, which is sound (see Refutation Theorem)

– (Intuitively: If 𝐾𝐵′ contains the unit clause 𝑙 , then 𝑙 must be made 

true, so 𝐶 ∪ ҧ𝑙 implies 𝐶)

▪ Incompleteness

– For completeness need to show: If 𝐾𝐵 ⊨ 𝐾𝐵′, then K𝐵′ can be 

derived from 𝐾𝐵 by UP

– No, unit propagation only makes limited inferences, as long as there 

are unit clauses. It does not guarantee to infer everything that can be 

inferred.

– Example: 𝑃, 𝑄 , 𝑃, ¬𝑄 , ¬𝑃, 𝑄 , ¬𝑃, ¬𝑄 is unsatisfiable, but unit 

propagation cannot derive the empty clause ◻.

Artificial Intelligence: Propositional Logic52
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Soundness and Completeness of DPLL (Splitting Rule)

▪ Soundness follows from Soundness of Unit Propagation

▪ Completeness:

– Without Unit Propagation, DPLL is complete
• Since we try every possible value assignment in the splitting step

– Resolution is refutation-complete on CNFs
• it is guaranteed to derive the empty clause if the given CNF is 

unsatisfiable

• If we can deduce the empty clause by applying resolution

→ DPLL deduces unsatisfiable CNF

• Hence, resolution only “deletes” invalid truth assignments

– By applying the splitting step we try all truth assignments 

which have not been shown to be invalid by resolution

→ DPLL is complete

Artificial Intelligence: Propositional Logic53
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DPLL Exploits Chronological Backtracking

▪ At each branching step, variable + truth value are selected 

– Two values can be assigned to a variable, either 0 or 1

▪ Decide on one value and evaluate the logical consequences

▪ Each time an unsatisfied clause (a conflict) is identified, 

backtracking is executed

– undoing branching steps until an unassigned branch is 

reached

– when both values have been assigned yielding a conflict, 

the CNF formula can be declared unsatisfiable

➢ Can we backtrack in a smarter way?

Artificial Intelligence: Propositional Logic54
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Decision Levels and Antecedents of Variables

Artificial Intelligence: Propositional Logic55

Level 1: 𝑥4 = 0@1 (choice)

no further assignment through unit propagation

Level 2: 𝑥1 = 0@2 (choice)

Unit propagation yields implied assignments 

𝑥3 = 1@2 and 𝑥2 = 1@2
𝑥3 is implied by antecedent 𝜔2 : 𝛼(𝑥3) = 𝜔2

𝑥2 is implied by the  antecedent 𝜔3 : 𝛼(𝑥2) = 𝜔3

𝜑 = 𝜔1 ∧ 𝜔2 ∧ 𝜔3

= 𝑥1 ∨ ¬𝑥4 ∧ 𝑥1 ∨ 𝑥3 ∧ ¬𝑥3 ∨ 𝑥2 ∨ 𝑥4



©  JK 

Implication Graph

▪ Vertices: all assigned variables and one special node κ
(representing the unsatisfied clause)

▪ Edges: obtained from the antecedent of each assigned 

variable

– if 𝛼 𝑥𝑖 = 𝜔 then there is a directed edge from each 

variable in 𝜔, other than 𝑥𝑖, to 𝑥𝑖

– if unit propagation yields an unsatisfied clause 𝜔𝑖 , then 

there is a special vertex and a directed edge from 𝜔𝑖 to κ, 
i.e. 𝛼(κ) =𝜔𝑖

Artificial Intelligence: Propositional Logic56

𝑥1 = 0@2

𝑥3 = 1@2 𝑥2 = 1@2

𝜔2
𝜔3
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𝑥31 = 0@3

𝑥1 = 0@5

𝑥2 = 0@5

𝑥3 = 0@5

𝑥4 = 1@5

𝑥21 = 0@2

𝑥5 = 0@5

𝑥6 = 0@5

𝜔1

𝜔1

𝜔2

𝜔3

𝜔3

𝜔4

𝜔5

𝜔5

𝜔6

𝜔6

𝜅

𝜑1 = 𝜔1 ∧ 𝜔2 ∧ 𝜔3 ∧ 𝜔4 ∧ 𝜔5 ∧ 𝜔6

= 𝑥1 ∨ 𝑥31 ∨ ¬𝑥2 ∧ 𝑥1 ∨ ¬𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∧
¬𝑥4 ∨ ¬𝑥5 ∧ 𝑥21 ∨ ¬𝑥4 ∨ ¬𝑥6 ∧ 𝑥5 ∨ 𝑥6

Implication Graph with Conflict

Artificial Intelligence: Propositional Logic
57

Choice literals in Blue:
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Conflict-Driven Clause Learning

▪ We have decision level 𝑑 = 5 leading to conflict 𝜅

▪ List of variables implied (by unit propagation) at decision level 5 is: 𝑥5, 

𝑥6, 𝑥4, 𝑥2, 𝑥3

▪ The truth values currently assumed for the choice variables 𝑥31, 𝑥1, 𝑥21 at 

the root of this implication graph leading to 𝜅 are the cause of the conflict

58

𝑥31 = 0@3

𝑥1 = 0@5

𝑥2 = 0@5

𝑥3 = 0@5

𝑥4 = 1@5

𝑥21 = 0@2

𝑥5 = 0@5

𝑥6 = 0@5

𝜔1

𝜔1

𝜔2

𝜔3

𝜔3

𝜔4

𝜔5

𝜔5

𝜔6

𝜔6

𝜅
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Learning the Cause of the Conflict

▪ The assignment of False to these decision variables led to

the conflict, so

¬𝒙𝟑𝟏 ∧ ¬𝒙𝟐𝟏 ∧ ¬𝒙𝟏 ⇒ conflict

▪ Negating this formula avoids the conflict

no conflict ⇒ ¬ ¬𝒙𝟑𝟏 ∧ ¬𝒙𝟐𝟏 ∧ ¬𝒙𝟏

≡ 𝒙𝟑𝟏 ∨ 𝒙𝟐𝟏 ∨ 𝒙𝟏

▪ So we have learnt that the clause 

𝒙𝟑𝟏, 𝒙𝟐𝟏, 𝒙𝟏

must be true on our way to a satisfying assignment

Artificial Intelligence: Propositional Logic59
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Another Example

Artificial Intelligence: Propositional Logic60

𝜑 = { ¬𝑃, ¬𝑄, 𝑅 , ¬𝑃, ¬𝑄, ¬𝑅 , ¬𝑃, 𝑄, 𝑅 , {¬𝑃, 𝑄, ¬𝑅}}

Let us assume a less smarter choice: 𝑃 = 1, 𝑄 = 1

𝜑 = { ¬𝑃, ¬𝑄, 𝑅 , ¬𝑃, ¬𝑄, ¬𝑅 , ¬𝑃, 𝑄, 𝑅 , {¬𝑃, 𝑄, ¬𝑅}}
0 0 00 0 01 1

Implied: 𝑅 = 1, ¬R = 1 leading to conflict 𝜅

Learned clause :¬ 𝑃 ∧ 𝑄 ≡ ¬𝑃 ∨ ¬Q ≡ {¬𝑃, ¬Q}

𝑃 is pure!  

Apply the Pure Symbol Heuristic and make all occurrences of ¬𝑃 true    

- set 𝑃 to 0 and we are done!
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Conflict-Driven Clause Learning - CDCL Algorithm

▪ UNITPROPAGATE is as in the DPLL Algorithm

▪ CONFLICTANALYSIS adds the new learnt clause to 𝐾𝐵 and 

returns the backtracking decision level

▪ BACKTRACK backtracks to the given decision level
Artificial Intelligence: Propositional Logic61
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Soundness and Completeness of CDCL

▪ DPLL is a sound and complete algorithm for SAT

▪ CDCL SAT solvers implement DPLL

– but can learn new clauses and backtrack 

nonchronologically

▪ Clause learning with conflict analysis does not affect 

soundness or completeness:

– Conflict analysis identifies new clauses using resolution

– Hence each learnt clause can be inferred from the 

original clauses and other learnt clauses by a sequence 

of resolution steps

Artificial Intelligence: Propositional Logic62
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Which Other Techniques Enable SAT Solvers to Scale?

▪ Component analysis: when assigning truth values to variables that set

of clauses can become separated into disjoint subsets (components) 

that do not share unassigned variables - the solver can work on each

component separately

▪ Variable and value ordering: Implement more clever selection of the

next variable and the truth value assigment - the degree heuristic

suggests to select the variable that appears most frequently over all 

remaining clauses

▪ Clever indexing: well-thought-trough data structures to find certain

variables or clauses quickly

▪ Random Restarts: simply start over when making no progress (see

local search lecture), but keep learned clauses
Artificial Intelligence: Propositional Logic63
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Summary

▪ Propositional reasoning plays a very important role today in 

SAT and SMT solvers to tackle large decision, optimization, 

and verification problems

– Although boolean variables are very simple and 

propositional logic seems to be very limited, very

complex problems can be represented when using

millions of variables or more

▪ Resolution, DPLL and Clause learning are important

algorithms used in modern solvers

▪ Limits of propositional reasoning result from

inherent uncertainty in the domain

– See figure on the right: the agent cannot obtain

further information in cell (1,) if it notices a breeze - a pit can be in 

(1,2) or (2,1): any move has a 50% risk of death
64
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Working Questions

1. Do you understand the syntax and semantics of propositional 

logic?

2. What is the essential terminology when talking about syntactic

and semantic properties of logical formulas? 

3. We learned about two normal forms DNF and CNF: can you

transform an arbitrary formula into these normal forms?

4. Can you explain and apply the resolution rule to a set of 

clauses?

5. What are the main techniques used in DPLL and how do they

work?

6. What is the key idea behind conflict-driven clause learning and 

why does it help a solver to become more effective in finding a 

satisfiable interpretation or concluding that no such interpretation

exists?
Artificial Intelligence: Propositional Logic65


