
© JK

Artificial Intelligence

Systematic (Uninformed) Search

Prof. Dr. habil. Jana Koehler
Dr. Sophia Saller, M. Sc. Annika Engel

Summer 2020
Deep thanks goes to
Prof. Jörg Hoffmann for
sharing his course material

© JK

Agenda

 Basic Terminology and Concepts

 Modeling Search Problems

 Uninformed (Systematic) Search Strategies
– Breadth-First search
– Depth-First search
– Depth-Limited search
– Iterative Deepening
– Uniform Cost search

Artificial Intelligence: Systematic Search2

© JK

Recommended Reading

 AIMA Chapter 3: Solving Problems by Searching
– 3.1 Problem Solving Agents
– 3.2 Example Problems
– 3.3 Searching for Solutions
– 3.4 Uninformed Search Strategies, the following

subchapters:
• 3.4.1 Breadth-first search
• 3.4.2 Uniform-cost search
• 3.4.3 Depth-first search
• 3.4.4 Depth-limited search
• 3.4.5 Iterative deepening depth-first search
• 3.4.7 Comparing uninformed search strategies

Artificial Intelligence: Systematic Search3

© JK

How can a Goal-based Agent reach a Goal?

 Agent perceives the world being in different states
– Initial state: the current state of the world
– Goal(s): a future state of the world (desirable for the agent)

Artificial Intelligence: Systematic Search4

?

© JK

 Discrete
– Finite number of states & actions

 Single agent
– Do not consider action-based

changes by other agents
 Static

– World does not change while agent is
deliberating

 Observable
– Agent has access to relevant

knowledge
 Deterministic

– Each action has exactly one
successor state

Discrete State-Based Search Problems

Artificial Intelligence: Systematic Search
5

© JK

State Spaces

Artificial Intelligence: Systematic Search6

Definition (State Space)
A state space is a 6-tuple Θ = 𝑆𝑆,𝐴𝐴, 𝑐𝑐,𝑇𝑇, 𝐼𝐼, 𝑆𝑆𝐺𝐺 where:
• 𝑆𝑆 is a finite set of states.
• 𝐴𝐴 is a finite set of actions.
• 𝑐𝑐 ∶ 𝑆𝑆 × 𝐴𝐴 ⟼ ℝ0

+ is the cost function.
• 𝑇𝑇 ⊆ 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 is the transition relation. We require that T is

deterministic, i.e., for all 𝑠𝑠 ∈ 𝑆𝑆 and 𝑎𝑎 ∈ 𝐴𝐴, there is at most one state 𝑠𝑠𝑠
such that 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ ∈ 𝑇𝑇. If such (𝑠𝑠,𝑎𝑎, 𝑠𝑠′) exists, then 𝑎𝑎 is applicable to 𝑠𝑠.

• 𝐼𝐼 ∈ 𝑆𝑆 is the initial state.
• 𝑆𝑆𝐺𝐺 ⊆ 𝑆𝑆 is the set of goal states.

We say that Θ has the transition (𝑠𝑠,𝑎𝑎, 𝑠𝑠′) if 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ ∈ 𝑇𝑇. We also write
𝑠𝑠 →

𝑎𝑎
𝑠𝑠𝑠, or 𝑠𝑠 → 𝑠𝑠𝑠 when not interested in 𝑎𝑎.

We say that Θ has unit costs if, for all 𝑎𝑎 ∈ 𝐴𝐴 and all 𝑠𝑠 ∈ 𝑆𝑆, 𝑐𝑐 𝑠𝑠,𝑎𝑎 = 1.

© JK

Illustration

 Unit costs? No (see numbers in brackets)
 Actions applicable in initial state 𝐼𝐼: A, B, C
 Deterministic 𝑇𝑇? No (see action G in state sg1)

Artificial Intelligence: Systematic Search7

I sg1

sg3

sg2
A(2)

C(3)
C(3)

B(4)

E(0)

E(0)

E(0)

C(3)

F(1)

D(7)

H(2)

G(0)

G(0)

G(0)

G(0)

s1

s2

s4

s3

s5

s6

s7

© JK

Terminology

Artificial Intelligence: Systematic Search8

• 𝑠𝑠′ successor of 𝑠𝑠 if 𝑠𝑠 → 𝑠𝑠𝑠; 𝑠𝑠 predecessor of 𝑠𝑠′ if 𝑠𝑠 → 𝑠𝑠𝑠.
• 𝑠𝑠𝑠 reachable from 𝑠𝑠 if there exists a sequence of transitions:

𝑠𝑠 = 𝑠𝑠0
𝑎𝑎1 𝑠𝑠1

𝑎𝑎2 ⋯
𝑎𝑎𝑛𝑛−1 𝑠𝑠𝑛𝑛−1

𝑎𝑎𝑛𝑛 𝑠𝑠𝑛𝑛 = 𝑠𝑠𝑠
• 𝑛𝑛 = 0 possible; then 𝑠𝑠 = 𝑠𝑠𝑠.
• (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) is called (action) path from 𝑠𝑠 to 𝑠𝑠𝑠.
• (𝑠𝑠0, … , 𝑠𝑠𝑛𝑛) is called (state) path from 𝑠𝑠 to 𝑠𝑠𝑠.
• The cost of that path is ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐 𝑠𝑠𝑖𝑖−1,𝑎𝑎𝑖𝑖 .

• 𝑠𝑠′ is reachable (without reference state) means reachable from 𝐼𝐼.
• 𝑠𝑠 is solvable if some 𝑠𝑠′ ∈ 𝑆𝑆𝐺𝐺 is reachable from 𝑠𝑠; else 𝑠𝑠 is a dead end.

© JK

(Optimal) State Space Solution

Artificial Intelligence: Systematic Search9

Let Θ = 𝑆𝑆,𝐴𝐴, 𝑐𝑐,𝑇𝑇, 𝐼𝐼, 𝑆𝑆𝐺𝐺 be a state space, and let 𝑠𝑠 ∈ 𝑆𝑆.

• A solution for 𝑠𝑠 is an action path (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) from 𝑠𝑠 to some 𝑠𝑠′ ∈ 𝑆𝑆𝐺𝐺.
• The solution is optimal if its cost is minimal among all solutions for
𝑠𝑠.

• A solution for 𝐼𝐼 is called a solution for Θ and denoted by 𝜌𝜌.
• The set of all solutions for Θ is denoted by 𝕊𝕊Θ.
• If a solution exists, then Θ is solvable, otherwise unsolvable.

© JK

Illustration

 All states reachable?
– No: s7 has only outgoing edges

 All states solvable?
– No: s2 has no outgoing edges (dead end)

 Optimal solutions?
B – E* – C – E – G* costs: 4+0+3+0+0 = 7

Artificial Intelligence: Systematic Search10

I sg1

sg3

sg2
A(2)

C(3)
C(3)

B(4)

E(0)

E(0)

E(0)

C(3)

F(1)

D(7)

H(2)

G(0)

G(0)

G(0)

G(0)

s1

s2

s4

s3

s5

s6

s7

© JK

Example: The 8-Puzzle

 States: ___
 Initial (Start) State: ________________________________
 Actions: __
 Goal states: _____________________________________
 Path Costs: _____________________________________

Artificial Intelligence: Systematic Search11

© JK

Formulating Search Problems

1) Blackbox description
– Application programming

interface (API) to construct the
state space

2) Whitebox description
– Accessible, but compact

representation of states, actions,
goal test, …

3) Explicit description
– Explicit representation of all

states in the state-space graph
Artificial Intelligence: Systematic Search12

© JK

Blackbox Description

 Application programming interface
(API) to construct the state space

Artificial Intelligence: Systematic Search13

© JK

Implementation – What is a Search Node?

Artificial Intelligence: Systematic Search14

© JK

Implementation – Operations on Search Nodes

Artificial Intelligence: Systematic Search15

© JK

Implementation – Operations on the Open List

 When being in some node n (with state 𝑠𝑠), we usually have
several options for applying actions that lead us to child
nodes (with successor states 𝑠𝑠𝑠)
– The list of these candidate children nodes is called Open

List

Artificial Intelligence: Systematic Search16

© JK

Whitebox Description: Romania Travel Example
 Find a route from Arad to Bucharest
 States: map with cities, initial state city, current city, and goal state city
 Actions: edges (trips) between cities
 Action costs: distance information on the edges

Artificial Intelligence: Systematic Search17

solution
a path from Arad to
Bucharest

optimal solution
the path from Arad to
Bucharest with
shortest path costs

© JK

Whitebox Description: Vacuum Cleaner Agent

Artificial Intelligence: Systematic Search18

© JK

Explicit Description: State Space of Vacuum Cleaning Agent

Artificial Intelligence: Systematic Search19

© JK

Search builds a Search Tree when exploring the
State Space Graph

Artificial Intelligence: Systematic Search20

repeated state frontier of the
search

Search tree = sequential
description of the visiting order

© JK

Terminology to discuss Search Algorithms

Artificial Intelligence: Systematic Search21

© JK

Repeated States

 … lead to loopy path

 Loopy paths can never contribute to the optimal solution

Artificial Intelligence: Systematic Search22

© JK

Redundant Paths

 Two possible paths from Sibiu to Bucharest
 The route via Fagaras is a more costly way to get to

Bucharest
99 + 211 = 310 vs. 80 + 97 + 101 = 278

Artificial Intelligence: Systematic Search23

© JK

Tree Search vs. Graph Search

 Tree search
– We assume that the search space has tree structure
– When performing tree search, we do not remember

visited nodes, because one node can only be visited
via exactly one path from the root of the tree (which
represents the initial state)

– However, with tree search on a graph we will not know
whether we generate repeated states

 Graph search
– Remember visited nodes (keep a closed list)
– Use duplicate elimination: If a generated state is in the

closed list, skip it, otherwise explore it

Artificial Intelligence: Systematic Search24

© JK

Comparing Tree Search with Graph Search

Artificial Intelligence: Systematic Search25

*

* a leaf in the
expanded
region (the
frontier) of the
search
graph/tree

*

© JK

Criteria for Evaluating Search Strategies

Artificial Intelligence: Systematic Search26

© JK

Systematic (Uninformed, Blind) Search Strategies

 No information on the length or cost of a path to the solution

1) Breadth-first search
2) Depth-first search
3) Depth-limited search
4) Iterative deepening search

 Only current path costs influence search

5) Uniform cost search

Artificial Intelligence: Systematic Search27

© JK

(1) Breadth-First Search (BFS)

 Nodes are expanded in the order they are produced
– the frontier is a FIFO queue

Artificial Intelligence: Systematic Search28

© JK

BFS Algorithm

 Duplicate check against explored set and frontier: No need to re-generate a state
already in the (current) last layer

 Goal test at node-generation time (as opposed to node-expansion time): We already
know this is a shortest path so can just stop

29

© JK

Properties of BFS

 Always finds the shallowest goal state first
 Completeness is obvious

– Incomplete for search spaces with infinite branching
(non-finite action space)

 The solution is optimal, provided every action has identical,
non-negative (unit) costs

 The Romania travel example has non-unit action costs
 The solution found is sub-optimal

Artificial Intelligence: Systematic Search30

© JK

Time and Space Complexity of BFS

 Time Complexity
– let b be the maximum branching factor and d the depth of

a solution path
– Maximum number of nodes expanded is

 Space Complexity
– every node generated is kept in memory: ∑𝑛𝑛=1𝑑𝑑 𝑏𝑏𝑛𝑛

– space needed for the frontier is: 𝑂𝑂(𝑏𝑏𝑑𝑑)
– space needed for the explored set: 𝑂𝑂(𝑏𝑏𝑑𝑑−1)

Artificial Intelligence: Systematic Search31

© JK

(2) Depth-First Search (DFS)

 Always expand the deepest (most recent) node in the
frontier
– the frontier is a a LIFO queue
– when a node has no children, search backs up to the

next deepest node that has unexplored children

Artificial Intelligence: Systematic Search32

© JK

Example of DFS

Artificial Intelligence: Systematic Search33

Nodes at depth 3
have no
successors and
M is the only goal
node

© JK

DFS Algorithm

Artificial Intelligence: Systematic Search34

© JK

Properties of DFS

 In general, solution found is not optimal

 Incomplete!
 Completeness can be guaranteed only for graph search (we

need to remember the visited nodes) or acyclic finite state
spaces
– In infinite state spaces, descends forever on infinite paths
– Tree search may loop forever in repeated states

Artificial Intelligence: Systematic Search35

© JK

Time and Space Complexity of DFS
 Time complexity is: 𝑂𝑂(𝑏𝑏𝑚𝑚)

– where 𝑚𝑚 is the maximum depth of the graph (longest
path)

– in the worst case all nodes have to be visited until a
solution is found

– this can be even larger than the state space if we do not
remember already visited nodes (on graphs)

 Space complexity is: 𝑂𝑂(𝑏𝑏𝑏𝑏) or 𝑂𝑂(𝑚𝑚)
– we need 𝑂𝑂(𝑚𝑚) to store the nodes along the current path

and 𝑂𝑂(𝑏𝑏) to store all neighbours (open list at each level)
– with clever indexing (backtracking search), we can save
𝑂𝑂(𝑏𝑏) and compute the neighbors dynamically in an
efficient way

Artificial Intelligence: Systematic Search36

© JK

(3) Depth-Limited Search (DLS)

 Depth-first search with an imposed cutoff on the maximum
depth of a path
– e.g., route planning: with n cities, the maximum depth is n -1
– in the example a depth of 9 is sufficient - every city can be reached

in at most 9 steps

Artificial Intelligence: Systematic Search37

© JK

Depth-Limited Search Algorithm

Artificial Intelligence: Systematic Search38

Limit must not be smaller than the depth of the shallowest goal state,
otherwise DLS is incomplete

© JK

Properties and Complexity of DLS

 Complete if the depth limit is larger than length of shortest
solution

 First solution found may not be optimal

 Time and space complexity as with DFS, but 𝑚𝑚 = 𝑙𝑙 (the
depth-limit)

 Time complexity: 𝑂𝑂 𝑏𝑏𝑙𝑙

 Space complexiy: 𝑂𝑂(𝑏𝑏𝑏𝑏) or 𝑂𝑂(𝑙𝑙) with backtracking search

Artificial Intelligence: Systematic Search39

© JK

(4) Iterative Deepening Search (IDS)

 Use depth-limited search and in every iteration increase
search depth by 1

Artificial Intelligence: Systematic Search40

© JK

Illustration of IDS

Artificial Intelligence: Systematic Search41

© JK

Illustration Continued

Artificial Intelligence: Systematic Search42

© JK

Properties of IDS
 Combines advantages of BFS and DFS
 Optimal for unit action costs

– extension to general action costs possible

 Complete (for finite branching)
 Complexity as for DLS

– Time: 𝑂𝑂 𝑏𝑏𝑙𝑙

– Space: 𝑂𝑂(𝑏𝑏𝑏𝑏) or 𝑂𝑂(𝑙𝑙) with backtracking search

43
=

© JK

(5) Uniform-Cost Search (UCS)

 Consider the path costs for each node

 Organize the frontier as a priority queue and expand the
node with the lowest path costs first

 Finds an optimal solution if all actions have non-negative
costs and if

for all 𝑛𝑛.

Artificial Intelligence: Systematic Search44

© JK

UCS Algorithm

 Goal test at node-expansion time
 Duplicates in frontier replaced in case of cheaper path

Artificial Intelligence: Systematic Search45

© JK

Example of UCS

Artificial Intelligence: Systematic Search46

1) S
2) RV (80), F (99)
3) F (99), P (177), S is pruned
4) P(177), B (via F 99 + 211) = 310
5) B (via P 177 + 101) = 278
6) Replace B(310) with B(278)
7) Expand B (278), all pruned

© JK

Properties and Complexity of UCS

 Optimal for non-negative action costs
– whenever a node is selected for expansion, the optimal

path to this node has been found
– does not care about the number of actions on a path, but

only about the total path costs
• will get stuck on infinite paths with zero-action costs

 Complete if all action costs > 0

 Time and space complexity: 𝑂𝑂 𝑏𝑏1+ ⁄𝐶𝐶∗ 𝜀𝜀

– C* path cost of optimal solution, action costs ≥ 𝜀𝜀
− if all action costs are equal then 𝑏𝑏𝑑𝑑+1

Artificial Intelligence: Systematic Search47

© JK

UCS and Dijkstra´s Algorithm

Artificial Intelligence: Systematic Search48

https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm

Dijkstra‘s algorithm:
Initialise the cost of each node to ∞ and the cost of the source to 0
While there are unknown nodes left in the graph

Select an unknown node with the lowest cost
and mark as known
For each node b adjacent to 𝑎𝑎

If 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎, 𝑏𝑏) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏) do
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎, 𝑏𝑏)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑏𝑏) = 𝑎𝑎

The only differences are:
(a)We generate only a part of that graph incrementally, whereas Dijkstra

inputs and processes the whole graph
(b)We stop when we reach any goal state (rather than a fixed target state

given the input)

Lemma. Uniform-cost search is equivalent to Dijkstra‘s algorithm on the
state space graph. (Obvious from the definition of the two algorithms)

© JK

Overview on Algorithm Properties

Criterion Breadth-
First

Uniform-
Cost

Depth-First Depth-
Limited

Iterative
Deepening

Bi-
directional
(if applicable)

Complete? Yesa Yesa,b Noe No Yesa Yesa,d

Time 𝑂𝑂 𝑏𝑏𝑑𝑑 𝑂𝑂 𝑏𝑏1+ ⁄𝐶𝐶∗ 𝜀𝜀 𝑂𝑂 𝑏𝑏𝑚𝑚 𝑂𝑂 𝑏𝑏𝑙𝑙 𝑂𝑂 𝑏𝑏𝑑𝑑 𝑂𝑂 𝑏𝑏 ⁄𝑑𝑑 2

Space 𝑂𝑂 𝑏𝑏𝑑𝑑 𝑂𝑂 𝑏𝑏1+ ⁄𝐶𝐶∗ 𝜀𝜀 𝑂𝑂 𝑏𝑏𝑏𝑏 f 𝑂𝑂 𝑏𝑏𝑏𝑏 f 𝑂𝑂 𝑏𝑏𝑏𝑏 f 𝑂𝑂 𝑏𝑏 ⁄𝑑𝑑 2

Optimal? Yesc Yes No No Yesc Yesc,d

Artificial Intelligence: Systematic Search49

Where:
𝑏𝑏 branching factor
𝑑𝑑 depth of solution
𝑚𝑚 maximum depth of the search tree
𝑙𝑙 depth limit
𝐶𝐶∗ cost of the optimal solution
𝜀𝜀 minimal cost of an action

Superscripts:
a 𝑏𝑏 is finite
b if step costs not less than 𝜀𝜀
c if step costs are all identical
d if both directions use breadth-first search
e Yes for finite search spaces
f 𝑂𝑂(𝑏𝑏) can be eliminated by backtracking

search

© JK

Summary

 IDS is the preferred uninformed search method when there
is a large search space and the depth (length) of the
solution is not known

 DFS is often used because of its minimal memory
requirements
– compact encodings of exponential-size explored node

set exists
 BFS is rarely found in practice

– this does not mean that there are no applications for
which this would be the search methods of choice!

 DLS prevents infinite descends on infinite paths

Artificial Intelligence: Systematic Search50

© JK

Working Questions

1. Which concepts are used to describe search problems?
2. Which concepts are used to describe search algorithms and

search spaces?
3. What is the difference between tree and graph search?
4. What is the set of explored nodes used for?
5. Why don’t we need a set of explored nodes when the

search space is a tree?
6. Can you explain how BFS, DFS, DLS, IDS, UCS work?
7. What properties are used to characterize search

algorithms?
8. Compare uninformed search methods based on time

complexity, space complexity, optimality, completeness.
Artificial Intelligence: Systematic Search51

	Artificial Intelligence��Systematic (Uninformed) Search
	Agenda
	Recommended Reading
	How can a Goal-based Agent reach a Goal?
	Discrete State-Based Search Problems
	State Spaces
	Illustration
	Terminology
	(Optimal) State Space Solution
	Illustration
	Example: The 8-Puzzle
	Formulating Search Problems
	Blackbox Description
	Implementation – What is a Search Node?
	Implementation – Operations on Search Nodes
	Implementation – Operations on the Open List
	Whitebox Description: Romania Travel Example
	Whitebox Description: Vacuum Cleaner Agent
	Explicit Description: State Space of Vacuum Cleaning Agent
	Search builds a Search Tree when exploring the �State Space Graph
	Terminology to discuss Search Algorithms
	Repeated States
	Redundant Paths
	Tree Search vs. Graph Search
	Comparing Tree Search with Graph Search
	Criteria for Evaluating Search Strategies
	Systematic (Uninformed, Blind) Search Strategies
	(1) Breadth-First Search (BFS)
	BFS Algorithm
	Properties of BFS
	Time and Space Complexity of BFS
	(2) Depth-First Search (DFS)
	Example of DFS�
	DFS Algorithm
	Properties of DFS
	Time and Space Complexity of DFS
	(3) Depth-Limited Search (DLS)
	Depth-Limited Search Algorithm
	Properties and Complexity of DLS
	(4) Iterative Deepening Search (IDS)
	Illustration of IDS
	Illustration Continued
	Properties of IDS
	(5) Uniform-Cost Search (UCS)
	UCS Algorithm
	Example of UCS
	Properties and Complexity of UCS
	UCS and Dijkstra´s Algorithm
	Overview on Algorithm Properties
	Summary
	Working Questions

