
© JK

Artificial Intelligence

Heuristic (Informed) Search

Prof. Dr. habil. Jana Koehler
Dr. Sophia Saller, M. Sc. Annika Engel

Summer 2020
Deep thanks goes to
Prof. Jörg Hoffmann for
sharing his course material

© JK

Agenda

 Using Knowledge during Search
– evaluation of search states
– admissible and consistent (monotone) heuristics

 Algorithms
1) Greedy (Best-First) Search
2) A* and IDA*
3) Bidirectional Search

 Finding good heuristics

Artificial Intelligence: Heuristic Search2

© JK

Recommended Reading

 AIMA Chapter 3: Solving Problems by Searching
– 3.4 Uninformed Search Strategies, the following subchapters:

• 3.4.6 Bidirectional search
– 3.5 Informed (Heuristic) Search Strategies

• 3.5.1 Greedy best-first search
• 3.5.2 A* search: Minimizing the total estimated solution cost

– 3.6 Heuristic Functions
• 3.6.1 The effect of heuristic accuracy on performance
• 3.6.2 Generating admissible heuristics from relaxed problems
• 3.6.3 Generating admissible heuristics from subproblems: Pattern

databases

 Optional reading:
– R. C. Holte, A. Felner, G. Sharon, N. R. Sturtevant: Bidirectional

Search That Is Guaranteed to Meet in the Middle, AAAI-2016

Artificial Intelligence: Heuristic Search3

© JK

How to Determine the next Node for Expansion?

 Uninformed Search
– rigid procedure, no knowledge of the cost from a node to

the goal
– e.g. FIFO, LIFO queues

 Informed Search
– "value" of expanding a node (state) used as guidance

that steers the search algorithm through the search
space

– evaluation function f(s) assigns a number to each state

Artificial Intelligence: Heuristic Search4

© JK

The Evaluation Function 𝒇𝒇(𝒔𝒔) = 𝒈𝒈(𝒔𝒔) + 𝒉𝒉(𝒔𝒔)

Artificial Intelligence: Heuristic Search5

I

𝑠𝑠𝑔𝑔𝑔
A(2)

C(3)
C(3)

B(4)

E(0)

E(0)
F(1) H(2)

G(0)

G(0)

G(0)

G(0)

s1

s2

s4

s3

s5

s6
s7

𝑔𝑔(𝑠𝑠) corresponds to the costs
from the initial state to the
current state 𝑠𝑠
 a precise value

+
ℎ(𝑠𝑠) corresponds to the
estimated costs from the current
state 𝑠𝑠 to the goal state 𝑠𝑠𝑔𝑔
 an estimated value

𝑠𝑠𝑔𝑔𝑔

𝑠𝑠𝑔𝑔𝑔

C(3)

g=2
g=5
h*=7

g=4

g=7
h*=0

© JK

Heuristic Functions 𝒉𝒉 and 𝒉𝒉∗

 ℎ 𝑠𝑠 = �0, if 𝑠𝑠 is a goal state
> 0, otherwise

 ℎ∗ 𝑠𝑠 = ∞ for dead-end states, from which the goal is unreachable
 ℎ∗ 𝑠𝑠 is also called the goal distance of 𝑠𝑠
 The value of ℎ depends only on the state 𝑠𝑠, not on the path that we

followed so far to construct the partial solution (and the costs 𝑔𝑔 of this
path)

Artificial Intelligence: Heuristic Search
6

Let Π be a problem with state space Θ. A heuristic function, short heuristic,
for Θ is a function ℎ ∶ 𝑆𝑆 ↦ ℝ0

+ ∪ ∞ so that, for every goal state 𝑠𝑠, we have
ℎ(𝑠𝑠) = 0.

The perfect heuristic ℎ∗ is the function assigning every 𝑠𝑠 ∈ 𝑆𝑆 the cost of a
cheapest path from 𝑠𝑠 to a goal state, or ∞ if no such path exists.

© JK

Desirable Properties of Heuristic Function 𝒉𝒉(𝒔𝒔)
1) Efficient to compute (ℎ 𝑠𝑠 = 0 as extreme case)
2) Informative (ℎ(𝑠𝑠) = ℎ∗(𝑠𝑠) as extreme case)

3) ℎ 𝑠𝑠 = �0, if 𝑠𝑠 is a goal state
> 0, otherwise

4) ℎ is admissible
5) ℎ 𝑠𝑠𝑑𝑑 = ∞ for dead-end states 𝑠𝑠𝑑𝑑
6) ℎ is consistent
 GOOD heuristics should satisfy a balanced compromise of properties (1)

to (4) at least, better of all 6
 Properties (5) ensures effective dead-end recognition and (6) is a

prerequisite for algorithms to guarantee minimal-cost (optimal) solutions
Artificial Intelligence: Heuristic Search7

© JK

Admissiblity of 𝒉𝒉(𝒔𝒔)

Artificial Intelligence: Heuristic Search8

Let Π be a problem with state space Θ and let ℎ be a heuristic
function for Θ. We say that ℎ is admissible if, for all 𝑠𝑠 ∈ 𝑆𝑆, we
have ℎ 𝑠𝑠 ≤ ℎ∗(𝑠𝑠).

The function ℎ∗ 𝑠𝑠 corresponds to the real cost of the optimal
path from node 𝑛𝑛 to a goal state.

The function ℎ is an optimistic estimation of the costs that
actually occur. It underestimates the real costs and provides
the search algorithm with a lower bound on the goal distance.

© JK

Consistency (Monotonicity) of h(s)

Artificial Intelligence: Heuristic Search9

goal state

𝑠𝑠

ℎ(𝑠𝑠)
ℎ(𝑠𝑠𝑠)

𝑐𝑐(𝑠𝑠,𝑎𝑎)

𝑠𝑠𝑠

Let Π be a problem with state space Θ, and let ℎ be a heuristic function for
Θ. We say that ℎ is consistent if, for all transitions s→

𝑎𝑎
𝑠𝑠′ in Θ, we have

ℎ 𝑠𝑠 − ℎ 𝑠𝑠′ ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎 .

The value 𝑐𝑐 𝑠𝑠,𝑎𝑎 is the action cost of getting from 𝑠𝑠 to 𝑠𝑠𝑠 with action 𝑎𝑎.
We reformulate the inequality from above to: ℎ 𝑠𝑠 ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎 + ℎ(𝑠𝑠𝑠).

Applying an action 𝑎𝑎 to the state 𝑠𝑠, the
heuristic value cannot decrease by more
than the cost 𝑐𝑐 𝑠𝑠,𝑎𝑎 of 𝑎𝑎.

Triangle inequality: The sum of the lengths of
any two sides of a triangle must be greater or
equal than the length of the remaining side.

© JK

Consistency ⟹ Admissibility

10

ℎ(𝑠𝑠)
ℎ(𝑠𝑠0)

ℎ(𝑠𝑠1)𝑐𝑐(𝑠𝑠0, 𝑎𝑎1)

ℎ(𝑠𝑠2)𝑐𝑐(𝑠𝑠1, 𝑎𝑎2)
.
.
.

Artificial Intelligence: Heuristic Search

Let Π be a problem with state space Θ and let ℎ be a heuristic function forΘ.
If ℎ is consistent, then ℎ is admissible.

To show: ℎ 𝑠𝑠 − ℎ 𝑠𝑠′ ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎 , ∀𝑠𝑠→
𝑎𝑎
𝑠𝑠′ ⟹ ℎ(𝑠𝑠) ≤ ℎ∗(𝑠𝑠), ∀𝑠𝑠 ∈ 𝑆𝑆.

This means that we need to show that a consistent heuristic never
overestimates the costs to the goal.

Observation: The value of ℎ can at most decrease by the action costs.

𝑠𝑠0
𝑎𝑎1 𝑠𝑠1

𝑎𝑎2 𝑠𝑠2
𝑎𝑎3 𝑠𝑠3 → ⋯ → 𝑠𝑠𝑔𝑔

ℎ 𝑠𝑠 − ℎ(𝑠𝑠𝑠) ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎
⇔ ℎ 𝑠𝑠 ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎 + ℎ(𝑠𝑠𝑠)

© JK

Proof: We need to show that 𝒉𝒉 𝒔𝒔 ≤ 𝒉𝒉∗ 𝒔𝒔 for all 𝒔𝒔.
For states 𝑠𝑠 (dead ends) where ℎ∗(𝑠𝑠) = ∞, this is trivial as any number is ≤ ∞.
Now let 𝒮𝒮𝑘𝑘 be the set of non dead-end states with a shortest cheapest path to a goal
state of length 𝑘𝑘.
We will prove for all 𝑘𝑘 that ℎ 𝑠𝑠 ≤ ℎ∗ 𝑠𝑠 for all 𝑠𝑠 ∈ 𝒮𝒮𝑘𝑘 by induction over 𝑘𝑘.

Base case: 𝑠𝑠 is a goal state, so 𝑠𝑠 ∈ 𝒮𝒮0 (𝑘𝑘 = 0). By the definition of heuristic functions
then ℎ(𝑠𝑠) = 0 and so ℎ(𝑠𝑠) ≤ ℎ∗(𝑠𝑠) = 0 as required.

Inductive Hypothesis: For all 𝑠𝑠 ∈ 𝒮𝒮𝑘𝑘 we have that ℎ 𝑠𝑠 ≤ ℎ∗ 𝑠𝑠 .

Inductive step: Let 𝑠𝑠 ∈ 𝒮𝒮𝑘𝑘+1. Then the cheapest path from 𝑠𝑠 to a goal state has length
𝑘𝑘 + 1. Let 𝑠𝑠𝑠 be the successor state of 𝑠𝑠 in this cheapest path, so 𝑠𝑠 →

𝑎𝑎
𝑠𝑠𝑠. We thus know

that 𝑠𝑠𝑠 ∈ 𝒮𝒮𝑘𝑘 and therefore
1) By the consistency of ℎ we have: ℎ 𝑠𝑠 − ℎ 𝑠𝑠′ ≤ 𝑐𝑐(𝑠𝑠, 𝑎𝑎)
2) By the Inductive Hypothesis: ℎ 𝑠𝑠′ ≤ ℎ∗ 𝑠𝑠′
3) Since the cheapest path has the cheapest costs: ℎ∗ 𝑠𝑠 = ℎ∗ 𝑠𝑠′ + 𝑐𝑐(𝑠𝑠, 𝑎𝑎)

Combining these three statements, we get
𝒉𝒉 𝒔𝒔 ≤ ℎ 𝑠𝑠′ + 𝑐𝑐 𝑠𝑠,𝑎𝑎 ≤ ℎ∗ 𝑠𝑠′ + 𝑐𝑐 𝑠𝑠,𝑎𝑎 = 𝒉𝒉∗(𝒔𝒔)

11

QED
1) 2) 3)

© JK

(1) Greedy Best-First Search

 Uses only the heuristic part of the evaluation function
𝑓𝑓(𝑠𝑠) = ℎ(𝑠𝑠)

 Expands the node first that is estimated as being closest to
the goal

 Does not consider the current path costs
– "counterpart" to uniform-cost search, which uses
𝑓𝑓(𝑠𝑠) = 𝑔𝑔(𝑠𝑠)

Artificial Intelligence: Heuristic Search12

© JK

GBFS Algorithm

 Frontier ordered by ascending ℎ
 Duplicates checked at successor generation, against both

the frontier and the explored set
Artificial Intelligence: Heuristic Search13

© JK

GBFS on the Romania Travel Example

Artificial Intelligence: Heuristic Search14

h: Aerial Distances
to Bucharest

© JK Artificial Intelligence: Heuristic Search15

© JK

Properties of GBFS

 Complete
– for finite state spaces and with duplicate elimination

 Not optimal

 Time complexity is 𝑂𝑂(𝑏𝑏𝑚𝑚)
 Space complexity is 𝑂𝑂 𝑏𝑏𝑚𝑚

where 𝑚𝑚 is the maximum depth of the search space

Artificial Intelligence: Heuristic Search16

© JK

(2) A* (Hart, Nilsson, Raphael 1968)
 Greedy search only uses ℎ(𝑠𝑠)

 Uniform-Cost search uses 𝑔𝑔(𝑠𝑠)
– finds an optimal solution if path costs grow monotonically:

𝑔𝑔(𝑠𝑠) ≤ 𝑔𝑔(𝑠𝑠𝑠)

 A* uses 𝑓𝑓(𝑠𝑠) = 𝑔𝑔(𝑠𝑠) + ℎ(𝑠𝑠)

 A* combines both using preferably admissible and consistent
heuristics

 http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
gives a good introduction

Artificial Intelligence: Heuristic Search17

http://theory.stanford.edu/%7Eamitp/GameProgramming/AStarComparison.html

© JK

A* Algorithm

Frontier ordered by ascending 𝑔𝑔 + ℎ, duplicates handled as in UCS (nodes
replaced by duplicates with cheaper costs)

Artificial Intelligence: Heuristic Search18

© JK

Properties of A*

 A* is complete
– if a solution exists, A* will find it provided that

1) every node has a finite number of successor nodes, and
2) each action has positive and finite costs

 A* is optimal
– first solution found has minimum path cost if ℎ is

admissible (on trees) or if ℎ is consistent (on graphs)
• under an admissible heuristics on graphs, A* needs to expand all

nodes with 𝑓𝑓(𝑛𝑛) ≤ 𝐶𝐶∗ (the cost of an optimal solution), called
“re-opening”

• For any path, re-opening checks if it is the cheapest to a state 𝑠𝑠
and puts explored states back into the frontier if a cheaper path
was found

Artificial Intelligence: Heuristic Search19

© JK

Properties of A*

 Time Complexity is 𝑂𝑂(𝑏𝑏𝑑𝑑)

 Space Complexity is 𝑂𝑂(𝑏𝑏𝑚𝑚), where 𝑚𝑚 is the maximum

depth of the search space

– subexponential growth requires that the error in the

heuristic function grows no faster than the logarithm of

the actual path cost

ℎ 𝑠𝑠 − ℎ∗(𝑠𝑠) ≤ 𝑂𝑂 log ℎ∗(𝑠𝑠)

Artificial Intelligence: Heuristic Search20

© JK

A* on the Romania Travel Example

Artificial Intelligence: Heuristic Search21

h: Aerial Distances
to Bucharest

© JK

Computed f-Values in the Example

Artificial Intelligence: Heuristic Search22

Bucharest is inserted
after Pitesti in the
frontier!

S,T,Z

R,F,T,Z,O

Frontier:

F,P,T,Z,C,O

P,T,Z,B,C´,O

B´,T,Z,C´,O

A

© JK

f-based Contours in the Search Space

 A* fans out from the start node, adding nodes in concentric
bands of increasing f-costs
– with good heuristics the bands stretch towards the goal state and are

more narrowly focused around the optimal path

Artificial Intelligence: Heuristic Search23

© JK

Proof of Optimality of A* under Consistent Heuristics

 The general idea for the proof is to encode the consistent
heuristic function as action costs and establish a
correspondence to uniform cost search
– UCS is optimal for non-negative action costs (Dijkstra´s

algorithm)

 We then show that the original and the transformed problem
have the same optimal solutions and isomorphic search
spaces

 Finally, we can prove that every optimal solution found by A*
on the transformed problem, is also an optimal solution for
the original problem

Artificial Intelligence: Heuristic Search24

© JK

Step 1: Encoding Heuristic Values as Action Costs

Artificial Intelligence: Heuristic Search25

Remember consistency of ℎ:
ℎ 𝑠𝑠 ≤ 𝑐𝑐 𝑠𝑠,𝑎𝑎 + ℎ 𝑠𝑠′

= ℎ 𝑠𝑠 − ℎ(𝑠𝑠𝑠) ≤ 𝑐𝑐(𝑠𝑠,𝑎𝑎)

Definition: Let Π be a problem with state space Θ = 𝑆𝑆,𝐴𝐴, 𝑐𝑐,𝑇𝑇, 𝐼𝐼, 𝑆𝑆𝐺𝐺 , and
let ℎ be a consistent heuristic function for Π. We define the ℎ-weighted
state space as Θℎ = 𝑆𝑆,𝐴𝐴ℎ, 𝑐𝑐ℎ ,𝑇𝑇ℎ, 𝐼𝐼, 𝑆𝑆𝐺𝐺 where:
• 𝐴𝐴ℎ ≔ 𝑎𝑎 𝑠𝑠, 𝑠𝑠′ | 𝑎𝑎 ∈ 𝐴𝐴, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆, 𝑠𝑠,𝑎𝑎, 𝑠𝑠′ ∈ 𝑇𝑇 ,
• 𝑐𝑐ℎ:𝐴𝐴ℎ → ℝ0

+ is defined by 𝑐𝑐ℎ 𝑎𝑎 𝑠𝑠, 𝑠𝑠𝑠 ≔ 𝑐𝑐 𝑠𝑠, 𝑎𝑎 − ℎ 𝑠𝑠 − ℎ 𝑠𝑠′ ,
• 𝑇𝑇ℎ = 𝑠𝑠,𝑎𝑎 𝑠𝑠, 𝑠𝑠𝑠 , 𝑠𝑠 | 𝑠𝑠, 𝑎𝑎, 𝑠𝑠𝑠 ∈ 𝑇𝑇 .

Lemma: Θℎ is well-defined, i.e.
𝑐𝑐 𝑠𝑠,𝑎𝑎 − ℎ 𝑠𝑠 − ℎ(𝑠𝑠𝑠) ≥ 0.

Proof: The assumption follows immediately from consistency.

© JK

Illustration of Encoding

26

700 = 400 - (2200 - 2500) 150 = 650 - (2200 -1700) 250 = 1950 - (1700 - 0)

Optimal Solution: SB - DD - M 650 + 1950 = 2600 = 150 + 250 + 2200
h(SB)

© JK

Identify the Correspondence (1)

Artificial Intelligence: Heuristic Search27

Lemma A: Θ and Θℎ have the same optimal solutions.

Proof: Let 𝑠𝑠0
𝑎𝑎1 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛−1

𝑎𝑎𝑛𝑛 𝑠𝑠𝑛𝑛 be the corresponding state path of a solution
in Θ, 𝑠𝑠𝑛𝑛 ∈ 𝑆𝑆𝐺𝐺. The cost of the same path in Θℎ is
−ℎ 𝑠𝑠0 + 𝑐𝑐 𝑠𝑠0, 𝑎𝑎1 + ℎ(𝑠𝑠1) + −ℎ 𝑠𝑠1 + 𝑐𝑐 𝑠𝑠1, 𝑎𝑎2 + ℎ(𝑠𝑠2) +

⋯+ −ℎ 𝑠𝑠𝑛𝑛−1 + 𝑐𝑐 𝑠𝑠𝑛𝑛−1,𝑎𝑎𝑛𝑛 + ℎ(𝑠𝑠𝑛𝑛)
= −ℎ 𝑠𝑠0 + 𝑐𝑐 𝑠𝑠0, 𝑎𝑎1 + ℎ 𝑠𝑠1 − ℎ 𝑠𝑠1 + 𝑐𝑐 𝑠𝑠1, 𝑎𝑎2 + ℎ 𝑠𝑠2 − ℎ 𝑠𝑠2 +

⋯− ℎ 𝑠𝑠𝑛𝑛−1 + 𝑐𝑐 𝑠𝑠𝑛𝑛−1,𝑎𝑎𝑛𝑛 + ℎ(𝑠𝑠𝑛𝑛)

= �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐 𝑠𝑠𝑖𝑖−1, 𝑎𝑎𝑖𝑖 − ℎ 𝑠𝑠0 + ℎ(𝑠𝑠𝑛𝑛) = �
𝑖𝑖=1

𝑛𝑛

𝑐𝑐 𝑠𝑠𝑖𝑖−1, 𝑎𝑎𝑖𝑖 − ℎ 𝑠𝑠0 ,

since 𝑠𝑠𝑛𝑛 is a goal state, it holds ℎ 𝑠𝑠𝑛𝑛 = 0.

Thus, the costs of solution paths in Θℎ are those of Θ, minus a constant.
The claim follows.

ℎ 𝑠𝑠𝑖𝑖 − ℎ 𝑠𝑠𝑖𝑖 = 0
∀𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁:− ℎ 𝑠𝑠 − ℎ 𝑠𝑠′ = −ℎ 𝑠𝑠 + ℎ 𝑠𝑠′

© JK

Identify the Correspondence (2)

Artificial Intelligence: Heuristic Search28

Lemma B: The search space of A* on Θ is isomorphic to that of uniform-

cost on Θℎ.

Proof: Let 𝑠𝑠0
𝑎𝑎1 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛−1

𝑎𝑎𝑛𝑛 𝑠𝑠𝑛𝑛 be any state path in Θ. The 𝑔𝑔 + ℎ value,

used by A*, is ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐(𝑠𝑠𝑖𝑖−1,𝑎𝑎𝑖𝑖) + ℎ(𝑠𝑠𝑛𝑛). The 𝑔𝑔 value in Θℎ, used by

uniform-cost search on Θℎ, is ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐(𝑠𝑠𝑖𝑖−1,𝑎𝑎𝑖𝑖) − ℎ 𝑠𝑠0 + ℎ(𝑠𝑠𝑛𝑛) (see Proof

of Lemma A). The difference −ℎ(𝑠𝑠0) is constant, so the ordering of the

frontier (open list) is the same. As the duplicate elimination is identical,

the assumption is shown.

© JK

Illustration of A* and UCS Searches

Artificial Intelligence: Heuristic Search29

0

400+2500 650+1700

650+1950+0

© JK

Proving the Final Theorem

Artificial Intelligence: Heuristic Search30

Theorem (Optimality of A*)
Let Π be a problem with state space Θ, and let ℎ be a heuristic
function for Θ. If ℎ is consistent, then the solution returned by
A* (if any) is optimal.

Proof Let 𝜌𝜌𝐴𝐴∗ be the solution returned by A* run on Θ. Denote by 𝕊𝕊𝑈𝑈𝑈𝑈𝑈𝑈 the
set of all solutions that can possibly be returned by uniform cost
search run on Θℎ.
By Lemma B we know that 𝜌𝜌𝐴𝐴∗ ∈ 𝕊𝕊𝑈𝑈𝑈𝑈𝑈𝑈.
By optimality of Uniform-Cost-Search, every element of 𝕊𝕊𝑈𝑈𝑈𝑈𝑈𝑈 is an
optimal solution for Θℎ.
Thus 𝜌𝜌𝐴𝐴∗ is an optimal solution for Θℎ.
Together with Lemma A, this implies that 𝜌𝜌𝐴𝐴∗ is an optimal solution
for Θ.

© JK

IDA* (Korf 1985)

 A* requires exponential memory in the worst case
– combine with Depth-Limited Search

 Idea: use successive iterations with increasing 𝑓𝑓-costs
– use 𝑓𝑓-bounds instead of bounding the length of the path

 At each iteration, perform a depth-first search, cutting off a
branch when its total cost (𝑔𝑔 + ℎ) exceeds a given threshold
– threshold starts at the estimate of the cost of the initial

state, and increases for each iteration of the algorithm
– at each iteration, the threshold used for the next iteration

is the minimum cost of all values that exceeded the
current threshold

Artificial Intelligence: Heuristic Search31

© JK

Example of IDA*

 initial 𝑓𝑓-cost limit = 366 (𝑓𝑓-costs of the initial state)
– first expansion: T=118 +329=447, S=140+253=393, Z=75+374=449

 next 𝑓𝑓-cost limit = 393 (S)

Artificial Intelligence: Heuristic Search32

© JK

Properties of IDA*

Artificial Intelligence: Heuristic Search33

 IDA* is complete if every node has a finite number of successor nodes

and if each action has positive and finite costs

 IDA* is optimal. The first solution found has minimal path costs if ℎ is

admissible (tree) or consistent (graph)

 Time Complexity is 𝑂𝑂(𝑏𝑏𝑑𝑑)

 Space Complexity is 𝑂𝑂(𝑑𝑑)

© JK

(3) Bidirectional Search (Concept of Searching)

 2 simultaneous searches: 1 forward (starting at initial state) and 1
backward (starting at goal state)

 Hoping that the two searches meet in an intersection state in the
middle

 Motivation: 𝑂𝑂 𝑏𝑏 ⁄𝑑𝑑 2 is exponentially less than 𝑂𝑂 𝑏𝑏𝑑𝑑

 Any search technique can be used
 Goal test ⟶ test if two searches have intersection state

Artificial Intelligence: Heuristic Search34

© JK

Example

Artificial Intelligence: Heuristic Search35

A

B

C

D
H

G

F

E

I

J
K

Initial state

Goal state

Forward search
with BFS:

Backward search
with DFS:

A → B → C → D K → I → G→ D

⟹ Problem: We do not necessary meet in the middle
and there is no guarantee that the solution is optimal

© JK

(3) Bidirectional Search – MM Algorithm (Holte et al 2016)

 First letter indicates the distance from start (N=near, F=far, R=remote)
and the second letter indicates the distance from goal (N=near, F=far)

 NN includes only those states at the exact midpoint of optimal
solutions

Artificial Intelligence: Heuristic Search36

R. C. Holte, A.
Felner, G. Sharon,
N. R. Sturtevant:
Bidirectional
Search That Is
Guaranteed to
Meet in the Middle,
AAAI-2016

© JK

Measuring Heuristic Distances in Bidirectional Search

 A* search in both directions
 Each search direction uses an admissible front-to-end

heuristic that directly estimates the distance from node 𝑛𝑛 to
the target of the search (target for forward search is the
goal, target for backward search is the start state)

 𝑑𝑑(𝑢𝑢, 𝑣𝑣) is the distance (cost of a least-cost path) from state 𝑢𝑢
to state 𝑣𝑣

 𝐶𝐶∗ = 𝑑𝑑("start", "goal") is the cost of an optimal solution
 State 𝑠𝑠 is “near to goal” if 𝑑𝑑(𝑠𝑠, goal) ≤ ⁄𝐶𝐶∗ 2, and “far from

goal” otherwise. For start, we make a 3-way distinction: 𝑠𝑠 is
“near to start” if 𝑑𝑑(start, 𝑠𝑠) ≤ ⁄𝐶𝐶∗ 2, “far from start” if ⁄𝐶𝐶∗ 2 <
𝑑𝑑(start, 𝑠𝑠) ≤ 𝐶𝐶∗, and “remote” if 𝑑𝑑(start, 𝑠𝑠) > 𝐶𝐶∗

Artificial Intelligence: Heuristic Search37

© JK

Properties of MM

 MM is complete

 MM is optimal for non-negative action costs, the first

solution found has minimal path costs if ℎ is admissible

(tree) or consistent (graph)

 If there exists a path from start to goal and MM’s heuristics

are consistent, MM never expands a state twice
Artificial Intelligence: Heuristic Search38

© JK

Overview on Properties of Heuristic Algorithms

39

Criterion Greedy Best-
First Search

A* search IDA* search MM Algorithm
(Bidirectional

search)
Evaluation

function 𝒇𝒇(𝒔𝒔) ℎ(𝑠𝑠) 𝑔𝑔 𝑠𝑠 + ℎ(𝑠𝑠) 𝑔𝑔 𝑠𝑠 + ℎ(𝑠𝑠) 𝑔𝑔 𝑠𝑠 + ℎ(𝑠𝑠)

Complete? Yesa,b Yesc,d Yesc,d Yese

Time 𝑂𝑂 𝑏𝑏𝑚𝑚 𝑂𝑂 𝑏𝑏𝑑𝑑 𝑂𝑂 𝑏𝑏𝑑𝑑 ?

Space 𝑂𝑂 𝑏𝑏𝑚𝑚 𝑂𝑂 𝑏𝑏𝑚𝑚 𝑂𝑂 𝑑𝑑 g ?

Optimal? No Yese Yese Yesf

Where:
𝑑𝑑 depth of solution
𝑚𝑚 maximum depth of the search space

Superscripts:
a for finite state spaces
b with duplicate elimination
c if every node has a finite number of

successor nodes
d if each action has positive and finite costs
e 1st solution found has minimal path costs if ℎ

is admissible (tree) or consistent (graph)
f for non-negative action costs
g with backtracking search, else 𝑂𝑂(𝑏𝑏𝑏𝑏)

© JK

Designing Heuristic Functions

 The informedness of the heuristic is critical for the success
of the search algorithm
– steer the algorithm towards the most promising parts of

the search space
– recognize dead ends early
– find a near-optimal solution under practical conditions

 Requires an understanding of the application domain
– keep heuristic and search approach separate
– try out different variants in empirical tests
– an art form and a hot topic in AI research

Artificial Intelligence: Heuristic Search40

© JK

Heuristic Functions Example

Artificial Intelligence: Heuristic Search41

ℎ1 corresponds to the number of tiles in the wrong position (Misplaced Tiles)

ℎ2 corresponds to the sum of the distances of the tiles from their goal

positions (Manhattan distance)

© JK

 Distance between two points measured along axes at right
angles

 Disadvantage: considers all tiles independently

Misplaced Tiles vs. Manhattan Distance

Artificial Intelligence: Heuristic Search42

h1 = 8 (all tiles are misplaced)

h2 = 3 + 1 + 2 + … = 18

goal position

current position

initial state goal state

© JK

Empirical Comparison of Both Example Heuristics

Artificial Intelligence: Heuristic Search43

© JK

Linear Conflict Heuristic vs. Manhattan Distance

 Two tiles 𝑡𝑡𝑗𝑗 and 𝑡𝑡𝑘𝑘 are in a linear conflict if 𝑡𝑡𝑗𝑗 and 𝑡𝑡𝑘𝑘 are in
the same line, the goal positions of 𝑡𝑡𝑗𝑗 and 𝑡𝑡𝑘𝑘 are both in that
line, 𝑡𝑡𝑗𝑗 is to the right of 𝑡𝑡𝑘𝑘 and the goal position of 𝑡𝑡𝑗𝑗 is to the
left of the goal position of 𝑡𝑡𝑘𝑘
– LC will add a cost of 2 moves for each pair of conflicting

tiles to the Manhattan Distance
– Motivation: Tiles need to surround one another

 LC is consistent and more informative than MH
Artificial Intelligence: Heuristic Search44

LC: 2 + 2 = 4

MH: 2 + 0 = 2

© JK

Gaschnig's Heuristic

Relaxed Move: Any tile can be moved to the blank position
(count the number of swaps)
loop until solution is found:

If 9 is not at the 1st position
then swap 9 with the element whose target position 9 is taking
else swap 9 with the rightmost element that is not in its proper place

Artificial Intelligence: Heuristic Search45

9 stands for the blank

transform 724596831
into 912345678

724596831 – 729546831 – 792546831 – 712546839 – 712546938 – 712549638 –
712945638 – 712345698 – 912345678
= 8 swaps

© JK

Applying Gaschnigs Heuristic During Search

 4 successor nodes
 Compute the number of swaps for each node
 Expand the node with the fewest number of swaps first
 Problem relaxation is a powerful idea and very successfully

used to derive good heuristics
Artificial Intelligence: Heuristic Search46

724596831

794526831 724956831 724569831 724536891

© JK

Problem Relaxation on Whitebox Description
 Primitive Predicates in the N-Puzzle

– ON(t, y) : tile t is on cell y
– CLEAR(y) : cell y is clear of tiles
– ADJ(y, z) : cell y is adjacent to cell z

 Move(t, y, z)
preconditions : ON(t, y) & CLEAR(z) & ADJ(y, z)
effects : ON(t, z) & CLEAR(y) &

NOT ON(t, y) & NOT CLEAR(z)

 Remove CLEAR(z) & ADJ(y, z) – Misplaced Tile heuristic
 Remove CLEAR(z) – Manhattan Distance heuristic
 Remove ADJ(y, z) – Gaschnig's heuristic

Artificial Intelligence: Heuristic Search47

© JK

 Apply the Divide and Conquer principle
– decompose the problem into subproblems (subgoals)
– store solutions to the subproblems with associated costs

(patterns)
– reuse these solutions

 Famous example: end game libraries in chess

Pattern Database

Artificial Intelligence: Heuristic Search48

Divide the 15 puzzle into Fringe + 8 puzzle
• map the current location of the fringe tiles

into an index of the database
• the data base tells us the minimal number

of moves to achieve the fringe
• achieve the fringe + solve the remaining 8

puzzle

© JK

Learning Heuristic Functions

 Relaxed problem heuristic
– problem with fewer restrictions on the actions is called a

relaxed problem
– cost of an optimal solution path to a relaxed problem is

an admissible heuristic for the original problem

 Modern search algorithms analyze the domain and the
given problem instance
– learn a problem-instance specific heuristic before they

start searching

Artificial Intelligence: Heuristic Search49

© JK

Summary
 Heuristic search is the preferred search method for medium

size search spaces
 The effectiveness of heuristic search depends on the

properties of the heuristic function: efficient to compute,
informative, admissible, consistent

 Only recently, a bidirectional search algorithm was
developed, which is guaranteed to meet in the middle, but
does not gurantee to reduce search and memory costs in
the worst case

 Greedy best-first search often quickly finds good solutions in
practice

 A* is optimal on graphs when using consistent heuristics
 Finding good heuristics can be done by analyzing the

search problem, e.g. using relaxation methods50

© JK

Working Questions

1. Explain the underlying ideas of greedy (best-first) search,
A* and IDA*.

2. What are the properties of A*?
3. Why can IDA* be more efficient than A* in practice?
4. What are heuristics, which role do they play in informed

search?
5. Which properties have good heuristics?
6. What is an admissible/consistent heuristic function?
7. What can happen with A* if the heuristic function is non-

admissible / non-consistent?
8. What is important for bidirectional search to work?

Artificial Intelligence: Heuristic Search51

	Artificial Intelligence��Heuristic (Informed) Search
	Agenda
	Recommended Reading
	How to Determine the next Node for Expansion?
	The Evaluation Function 𝒇(𝒔)=𝒈(𝒔)+𝒉(𝒔)
	Heuristic Functions 𝒉 and 𝒉 ∗
	Desirable Properties of Heuristic Function 𝒉(𝒔)
	Admissiblity of 𝒉(𝒔)
	Consistency (Monotonicity) of h(s)
	Consistency ⟹ Admissibility
	Foliennummer 11
	(1) Greedy Best-First Search
	GBFS Algorithm
	GBFS on the Romania Travel Example
	Foliennummer 15
	Properties of GBFS
	(2) A* (Hart, Nilsson, Raphael 1968)
	A* Algorithm
	Properties of A*
	Properties of A*
	A* on the Romania Travel Example
	Computed f-Values in the Example
	f-based Contours in the Search Space
	Proof of Optimality of A* under Consistent Heuristics
	Step 1: Encoding Heuristic Values as Action Costs
	Illustration of Encoding
	Identify the Correspondence (1)
	Identify the Correspondence (2)
	Illustration of A* and UCS Searches
	Proving the Final Theorem
	IDA* (Korf 1985)
	Example of IDA*
	Properties of IDA*
	(3) Bidirectional Search (Concept of Searching)
	Example
	(3) Bidirectional Search – MM Algorithm (Holte et al 2016)
	Measuring Heuristic Distances in Bidirectional Search
	Properties of MM
	Overview on Properties of Heuristic Algorithms
	Designing Heuristic Functions
	Heuristic Functions Example
	Misplaced Tiles vs. Manhattan Distance
	Empirical Comparison of Both Example Heuristics
	Linear Conflict Heuristic vs. Manhattan Distance
	Gaschnig's Heuristic
	Applying Gaschnigs Heuristic During Search
	Problem Relaxation on Whitebox Description
	Pattern Database
	Learning Heuristic Functions
	Summary
	Working Questions

