©® UNIVERSITAT
wuuu"“u DES
Huull

SAARLANDES

Artificial Intelligence

Systematic (Uninformed) Search

Prof. Dr. habil. Jana Koehler
Dr. Sophia Saller, M. Sc. Annika Engel

Deep thanks goes to

Summer 2020 Prof._ Jorg Hoffmann for |
sharing his course material

© JK

UMIVERSITAT
DES
SAARLAMDES

Ja<

Agenda

= Basic Terminology and Concepts
= Modeling Search Problems

= Uninformed (Systematic) Search Strategies

— Breadth-First search
— Depth-First search

— Depth-Limited search
— Iterative Deepening
— Uniform Cost search

2 Artificial Intelligence: Systematic Search

UMIVERSITAT
DES
SAARLAMDES

Ju<

Recommended Reading

= AIMA Chapter 3: Solving Problems by Searching
— 3.1 Problem Solving Agents
— 3.2 Example Problems
— 3.3 Searching for Solutions

— 3.4 Uninformed Search Strategies, the following

subchapters:
« 3.4.1 Breadth-first search
3.4.2 Uniform-cost search
3.4.3 Depth-first search
3.4.4 Depth-limited search
3.4.5 lterative deepening depth-first search
3.4.7 Comparing uninformed search strategies

3 Artificial Intelligence: Systematic Search

UMIVERSITAT
DES
SAARLAMDES

How can a Goal-based Agent reach a Goal?

= Agent perceives the world being in different states
— Initial state: the current state of the world
— Goal(s): a future state of the world (desirable for the agent)

Sensors

Ny

What the world
(How the world evolves 1s like now

Y

, . What 1t will be like
(\K hat my actions do i1 do action A4

JUSWIUOITAUY

/ What action I
\ oals should do now

Agent Actuators -

4 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Discrete State-Based Search Problems

= Discrete
— Finite number of states & actions

= Single agent
— Do not consider action-based
changes by other agents

= Static

— World does not change while agent is
deliberating

= Observable

— Agent has access to relevant
knowledge

= Deterministic

— Each action has exactly one,
successor state S X a — S

Artificial Intelligence: Systematic Search

UNIVERSITAT 1
DES
SAARLANDES ,

State Spaces

Definition (State Space)

A state space is a 6-tuple ® = (S,4,¢,T,1,5%) where:

e S is a finite set of states.

A Is a finite set of actions.

c:S x A — Rj is the cost function.

T €85 xA xS isthe transition relation. We require that T is
deterministic, i.e., forall s € S and a € A, there is at most one state s’
such that (s,a,s’) € T. If such (s,a,s’) exists, then a is applicable to s.
I € S is the initial state.

S¢ c S is the set of goal states.

We say that 0 has the transition (s,a,s’) if (s,a,s’) € T. We also write

a
s —s', or s » s’ when not interested in a.
We say that © has unit costsif, foralla € Aand all s € S, c(s,a) = 1.

6 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Xl

lllustration c(3) . D(7)
4

= Unit costs? No (see numbers in brackets)

= Actions applicable in initial state I: A, B, C
= Deterministic T? No (see action G in state s)

7 Artificial Intelligence: Systematic Search

UNIVERSITAT 1
DES
SAARLANDES ,

Terminology

e s’ successorofsifs—s’;spredecessorofs’ifs—s'.

e s’ reachable from s if there exists a sequence of transitions:
a az an-1 an
S = SO >Sl > e _)Sn—l_) Sn:S

e n = 0 possible;then s =s'.
* (aq,...,ay) is called (action) path from s to s’.
e (sy,...,S,) is called (state) path from s to s’.
« The cost of that path is Y.}, c(s;_1, a;).
* s'isreachable (without reference state) means reachable from 1.
« sis solvable if some s’ € S¢ is reachable from s; else s is a dead end.

!

8 Artificial Intelligence: Systematic Search © JK

UNIVERSITAT 1
DES
SAARLANDES ,

(Optimal) State Space Solution

Let® = (S,4,c,T,1,5%) be a state space, and let s € S.

« A solution for s is an action path (a4, ..., a,) from s to some s’ € S°.
» The solution is optimal if its cost is minimal among all solutions for

S.
e Asolution for I is called a solution for ® and denoted by p.

 The set of all solutions for © is denoted by S°.
* |f a solution exists, then 0 is solvable, otherwise unsolvable.

9 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

lllustration

D(7)

All states reachable?
— No: s, has only outgoing edges

All states solvable?
— No: s, has no outgoing edges (dead end)

Optimal solutions?
B-E*-C-E-G* costs: 4+0+3+0+0 =7

10 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Jg<

Example: The 8-Puzzle

7 2 4 |
5 6 4
8 3 | 7
Start State Goal State
= States:
= [nitial (Start) State:
= Actions:

= Goal states:

= Path Costs:

11 Artificial Intelligence: Systematic Search

UMIVERSITAT
DES
SAARLAMDES

Formulating Search Problems

1) Blackbox description

— Application programming
Interface (API) to construct the
state space

2) Whitebox description

— Accessible, but compact

representation of states, actions,
goal test, ...

3) Explicit description

— Explicit representation of all
states in the state-space graph

12 Artificial Intelligence: Systematic Search

[Node lf)\c'nug = Right

ATH-COST = 6
| |I||I - ATH-COST
-]

R
o =4 1 =4
vve‘m =3 _I_ﬂ-:‘ i
_— = \\\\\
C P : = 3] [2
= M z N
- S5 -
=) //4“\'\
v - ./
(D) [
S

UNIVERSITAT 1
DES
SAARLANDES ,

Blackbox Description

PARENT

Node ACTION = Right

PATH-COST =6

= Application programming interface
(API) to construct the state space

STATE

' H

Blackbox Description of a Problem |

@ [nitialState(): Returns the initial state of the problem.

@ GoalTest(s): Returns a Boolean, “true” iff state s is a goal state.

@ Cost(a): Returns the cost of action a.

@ Actions(s): Returns the set of actions that are applicable to state s.
=

ChildState(s, a): Requires that action a is applicable to state s, i.e., there
. S a / /
Is a transition s — s’. Returns the outcome state s’.

13 Artificial Intelligence: Systematic Search © JK

Implementation — What is a Search Node?

Data Structure for Every Search Node n

n.State: The state (from the state space) which the node contains.

n.Parent: The node in the search tree that generated this node.
n.Action: The action that was applied to the parent to generate the node.

n.PathCost: g(n), the cost of the path from the initial state to the node (as indicated
by the parent pointers).

PARENT-NODE

s || 4 Node ACTION = right
PATH-COST = 6

14 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES :

Implementation — Operations on Search Nodes

Operations on Search Nodes

Solution(n): Returns the path to node n. (By backchaining over
the n.Parent pointers and collecting n.Action in each

step.)

ChildNode(problem,n,a): Generates the node n’ corresponding to the
application of action a in state n.State. That is:
n'.State:=problem.ChildState(n.State, a);
n’.Parent:= n:; n’.Action:= a;
n’.PathCost:= n.PathCost+problem.Cost(a).

15 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES)

Implementation — Operations on the Open List

= When being in some node n (with state s), we usually have
several options for applying actions that lead us to child
nodes (with successor states s”)

— The list of these candidate children nodes is called Open
List

Operations for the Open List

Empty?(frontier): Returns true iff there are no more elements in the
open list.

Pop(frontier): Returns the first element of the open list, and
removes that element from the list.

Insert(element, frontier): Inserts an element into the open list.

16 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES)

Whitebox Description: Romania Travel Example

17

Find a route from Arad to Bucharest

States: map with cities, initial state city, current city, and goal state city
Actions: edges (trips) between cities

Action costs: distance information on the edges

solution
a path from Arad to
Bucharest

optimal solution
the path from Arad to
Bucharest with
shortest path costs

Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

.m

Whitebox Description: Vacuum Cleaner Agent

o World state space:
2 positions, dirt or no dirt
— 8 world states

@ Actions: 3
Left (L), Right (R), or Suck (.5)
o Goal: 3

no dirt in the rooms

@ Path costs:
one unit per action

18 Artificial Intelligence: Systematic Search

0[5 FH] FE

SR | 08R
SR
oo
=g

UMIVERSITAT
DES
SAARLAMDES

Explicit Description: State Space of Vacuum Cleaning Agent

19 Artificial Intelligence: Systematic Search © JK

Search builds a Search Tree when exploring the

State Space Graph
(a) The initial state

Search tree = sequential

f i L el
(b) After expandOf the visiting order
CSibin > Climisour CZerind >

(c) After expanding Sibiu

repeated state CGeind> .o ntiar of the

search

20 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES :

Terminology to discuss Search Algorithms

Search node n: Contains a state reached by the search, plus
information about how it was reached.

Path cost g(n): The cost of the path reaching n.

Optimal cost ¢*: The cost of an optimal solution path. For a state s,
g*(s) is the cost of a cheapest path reaching s.

Node expansion: Generating all successors of a node, by applying all
actions applicable to the node's state 5. Afterwards,
the state s itself is also said to be expanded.

Search strategy: Method for deciding which node is expanded next.

Open list: Set of all nodes that currently are candidates for
expansion. Also called frontier.

Closed list: Set of all states that were already expanded. Used only
in graph search, not in tree search (up next). Also
called explored set.

21 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

SN

Repeated States

= ... lead to loopy path

(¢) After expanding Sibiu

= Loopy paths can never contribute to the optimal solution

22

Artificial Intelligence: Systematic Search

© JK

UMIVERSITAT
DES
SAARLAMDES

<

Redundant Paths

= Two possible paths from Sibiu to Bucharest

= The route via Fagaras is a more costly way to get to
Bucharest

99+211=310vs. 80 +97 +101=2/8

Sibiu Fagaras

80

Rimnicu Yilcea

Pitesti

Bucharest

23 Artificial Intelligence: Systematic Search

UMIVERSITAT
DES
SAARLAMDES

Tree Search vs. Graph Search

= Tree search
— We assume that the search space has tree structure

— When performing tree search, we do not remember
visited nodes, because one node can only be visited
via exactly one path from the root of the tree (which
represents the initial state)

— However, with tree search on a graph we will not know
whether we generate repeated states

= Graph search
— Remember visited nodes (keep a closed list)

— Use duplicate elimination: If a generated state is in the
closed list, skip it, otherwise explore it

24 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Comparing Tree Search with Graph Search

function TREE-SEARCH(problem) returns a solution, or failure
mitialize the frontier using the mitial state of problem
loop do
if the frontier 1s empty then return failure
choose a leaf node*and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution. or failure
initialize the frontier using the initial state of problem

B initialize the explored set to be empty

loop do
if the frontier 1s empty then return failure
choose a leaf node*and remove it from the frontier
if the node contains a goal state then return the corresponding solution

| add the node to the explored set

expand the chosen node, adding the resulting nodes to the frontier

| only if not in the frontier or explored set

25

Artificial Intelligence: Systematic Search

*a leaf in the
expanded
region (the
frontier) of the
search
graph/tree

UMIVERSITAT
DES
SAARLAMDES :

Criteria for Evaluating Search Strategies

Guarantees:

Completeness: |s the strategy guaranteed to find a solution when there is
one?

Optimality: Are the returned solutions guaranteed to be optimal?

Complexity:
Time Complexity: How long does it take to find a solution? (Measured
in generated states.)

Space Complexity: How much memory does the search require?
(Measured in states.)

Typical state space features governing complexity:

Branching factor b: How many successors does each state have?

Goal depth d: The number of actions required to reach the
shallowest goal state.

26 Avrtificial Intelligence: Systematic Search © JK

e UNIVERSITAT
DES
SAARLANDES |

Systematic (Uninformed, Blind) Search Strategies

= No information on the length or cost of a path to the solution

1) Breadth-first search

2) Depth-first search

3) Depth-limited search

4) lterative deepening search

= Only current path costs influence search

5) Uniform cost search

27 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES 4 ;

(1) Breadth-First Search (BFS)

= Nodes are expanded in the order they are produced
— the frontier is a FIFO queue

P>®

> ® ® G

28 Artificial Intelligence: Systematic Search © JK

gy =l
BFS Algorithm

function BREADTH-FIRST-SEARCH(problem) returns a solution or failure
node < a node with node.State = problem.InitialState
PathCost = 0
if GoalTest(node.State) then return Solution(node)

frontier < a FIFO queue with node as the only element
explored <— an empty set
loop do

if EMPTY?(frontier) then return failure

node < POP(frontier) /*chooses the shallowest node in frontier™/
add node.State to explored
for each action in problem.Actions(node.State) do
child < ChildNode(problem, node, action)
if child.State is not in explored or frontier then
if GoalTest(child.State) then return Solution(child)

frontier < Insert(child, frontier)

= Duplicate check against explored set and frontier: No need to re-generate a state
already in the (current) last layer

= Goal test at node-generation time (as opposed to node-expansion time): We already
know this is a shortest path so can just stop '

29 © JK

UMIVERSITAT |
DES
SAARLAMDES

Properties of BFS

= Always finds the shallowest goal state first

= Completeness is obvious

— Incomplete for search spaces with infinite branching
(non-finite action space)

= The solution is optimal, provided every action has identical,
non-negative (unit) costs

» The Romania travel example has non-unit action costs

» The solution found is sub-optimal

30 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Time and Space Complexity of BFS

= Time Complexity

— let b be the maximum branching factor and d the depth of
a solution path

— Maximum number of nodes expanded is

d
b+ +0°+...+b7 =) b eO (b9
n=1

= Space Complexity
— every node generated is kept in memory: Y4_, b"
— space needed for the frontier is: 0(b%)
— space needed for the explored set: 0(b%™1)

31 Artificial Intelligence: Systematic Search © JK

e UNIVERSITAT
DES
SAARLANDES

(2) Depth-First Search (DFS)

= Always expand the deepest (most recent) node in the
frontier

— the frontier is a a LIFO gueue

— when a node has no children, search backs up to the
next deepest node that has unexplored children

° c/.\.
>(B) ©

32 Artificial Intelligence: Systematic Search © JK

Example of DFS
>®

Pl
n

Nodes at depth 3

have no

successors and R
M is the only goal

node

33 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES :

DFS Algorithm

function RECURSIVE DEPTH-FIRST SEARCH(n, problem) returns a solution or failure
if problem.GoalTest(n.State) then return the empty action sequence

for each action a in problem.Actions(n.State) do
n’ < ChildNode(problem, n, a)
result <~ RECURSIVE DEPTH-FIRST SEARCH(n/, problem)
if result # failure then return ao result

return failure

34 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT |
DES

SAARLAMDES

Properties of DFS

= |n general, solution found is not optimal

= |[ncomplete!

= Completeness can be guaranteed only for graph search (we
need to remember the visited nodes) or acyclic finite state

spaces
— In infinite state spaces, descends forever on infinite paths

— Tree search may loop forever in repeated states

35 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

Time and Space Complexity of DFS
= Time complexity is: O(b™)
— where m is the maximum depth of the graph (longest
path)
— In the worst case all nodes have to be visited until a
solution is found

— this can be even larger than the state space if we do not
remember already visited nodes (on graphs)

= Space complexity is: O(bm) or O(m)
— we need 0(m) to store the nodes along the current path
and O(b) to store all neighbours (open list at each level)
— with clever indexing (backtracking search), we can save
O(b) and compute the neighbors dynamically in an
efficient way

36 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES)

(3) Depth-Limited Search (DLS)

= Depth-first search with an imposed cutoff on the maximum
depth of a path
— e.g., route planning: with n cities, the maximum depthis n -1

— in the example a depth of 9 is sufficient - every city can be reached
In at most 9 steps

37 Artificial Intelligence: Systematic Search © JK

UNIVERSITAT 1
DES
SAARLANDES ,

Depth-Limited Search Algorithm

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution or failure/cutoft
return RECURSIVE-DLS(MakeNode(problem.InitialState, problem, limit))

function RECURSIVE-DLS(node, problem, limit) returns a solution or failure/cutoff
if GoalTest(node.State) then return Solution(node)
else if limit = 0 then return cutoff
else
cutoffOccurred <+ false
for each action in Actions(node.State) do
child <— ChildNode(problem, node, action) /
result < RECURSIVE-DLS(child, problem, limit-1)
if result = cutoff then cutoffOccurred < true
else if result # failure then return result

if cutoffOccurred then return cutoff
else return failure

Limit must not be smaller than the depth of the shallowest goal state,
otherwise DLS is incomplete

38 Avrtificial Intelligence: Systematic Search © JK

sl

UMIVERSITAT
DES
SAARLAMDES

Properties and Complexity of DLS

39

Complete if the depth limit is larger than length of shortest
solution

First solution found may not be optimal

Time and space complexity as with DFS, but m
depth-limit)

[(the

Time complexity: 0(b')
Space complexiy: 0(bl) or O(l) with backtracking search

Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

(4) Iterative Deepening Search (IDS)

= Use depth-limited search and in every iteration increase
search depth by 1

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution or failure
for depth = 0 to co do
result <— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

40 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT \
DES
SAARLAMDES 4

lllustration of IDS

Limit =0 40) &

Limit = 1 >®

Limit =2 20)

e e

41 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

lllustration Continued

Limit = 3 {0)

@ @

S g e
o e

42 Avrtificial Intelligence: Systematic Search © JK

Properties of IDS
= Combines advantages of BFS and DFS

= Optimal for unit action costs
— extension to general action costs possible

= Complete (for finite branching)

= Complexity as for DLS
— Time: 0(b')
— Space: 0(bl) or 0(l) with backtracking search
Time complexity:
Breadth-First-Search ‘ b4+b*+ -+ b bc O

Iterative Deepening Search ‘ (d)b+ (d —)b+ - + 3672 1261 £ 1c O(b")

Example: b =10,d =5
Breadth-First Search | 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
Iterative Deepening Search | 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123,450
=5x 101 +4 x 10> +3 x 103 + 2 x 10* + 1 x 10°

43 © JK

CICbm UNIVERSITAT
DES
SAARLANDES

(5) Uniform-Cost Search (UCS)

= Consider the path costs for each node g(n)

= QOrganize the frontier as a priority queue and expand the
node with the lowest path costs first

= Finds an optimal solution if all actions have non-negative
costs and if

g(successor(n)) > g(n)

for all n.

44 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES)

UCS Algorithm

function UNIFORM-COST SEARCH(problem) returns a solution or failure
node < a node n with n.State = problem.InitialState
frontier <— a priority queue ordered by ascending g, only element n
explored < empty set of states
loop
if Is.Empty(frontier) then return failure

n < Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)

explored <« explored U n.State

for action a in problem.Actions(n.State) do
n' <— ChildNode(problem, n, a)
if n/.State € [explored U States(frontier)] then Insert(n’, g(n’), frontier)
else if ex. n’' € frontier s.t. n”.State = n’.State and g(n') < g(n")
then replace n'' in frontier with n’

= Goal test at node-expansion time
= Duplicates in frontier replaced in case of cheaper path

45 Artificial Intelligence: Systematic Search © JK

UNIVERSITAT 1
DES
SAARLANDES ,

Example of UCS

Sibiu 99 Fagaras 1) S

2) RV (80), F (99)

3) F(99),P (177), S is pruned

4) P(177),B (viaF 99 + 211) = 310
5 B(viaP 177+ 101) =278

6) Replace B(310) with B(278)

7) Expand B (278), all pruned

Rimnicu Vilcea

Pitesti

Bucharest

46 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT |
DES
SAARLAMDES

Properties and Complexity of UCS

= Optimal for non-negative action costs

— whenever a node is selected for expansion, the optimal
path to this node has been found

— does not care about the number of actions on a path, but

only about the total path costs
« will get stuck on infinite paths with zero-action costs

= Complete if all action costs > 0

= Time and space complexity: 0(b1+1¢"/¢l)
— C* path cost of optimal solution, action costs > ¢
— if all action costs are equal then h%*1

47 Artificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

UCS and Dijkstra’s Algorithm

Lemma. Uniform-cost search is equivalent to Dijkstra‘'s algorithm on the
state space graph. (Obvious from the definition of the two algorithms)

The only differences are:

(a) We generate only a part of that graph incrementally, whereas Dijkstra
iInputs and processes the whole graph

(b) We stop when we reach any goal state (rather than a fixed target state
given the input)

Dijkstra‘s algorithm:
https://en.wikipedia.org/wiki/

Initialise the cost of each node to co and the cost of the source to O Dijkstra%27s_algorithm
While there are unknown nodes left in the graph
Select an unknown node with the lowest cost .
and mark as known
For each node b adjacent to a
If cost(a) + cost(a,b) < cost(b) do
cost(b) = cost(a) + cost(a,b)
parent(b) = a

48 Avrtificial Intelligence: Systematic Search © JK

UMIVERSITAT
DES
SAARLAMDES

sl

Overview on Algorithm Properties

Criterion Breadth- Uniform- | Depth-First Depth- lterative Bi-
First Cost Limited Deepening | directional
(if applicable)
No¢€ No

Yes? Yesab

Complete?

Time o(r?) o(ptlc/ehy o(™)
Space o(bY) o(p*tlc/ely o(bm)
Optimal? Yes¢ Yes No
Where:
b branching factor a
d depth of solution b
m maximum depth of the search tree ¢
[depth limit d
C* cost of the optimal solution €
¢ minimal cost of an action f

Artificial Intelligence: Systematic Search

Yes? Yes2d
o(b") 0(b?) 0(b%/?)
0 (bl)f 0(bd)' 0(b?/?)
No Yese® Yes¢d

Superscripts:

b is finite

if step costs not less than ¢

if step costs are all identical

if both directions use breadth-first search
Yes for finite search spaces

O(b) can be eliminated by backtracking
search

sl

UMIVERSITAT :
DES
SAARLAMDES

Summary

50

IDS is the preferred uninformed search method when there
IS a large search space and the depth (Ilength) of the
solution is not known

DFS is often used because of its minimal memory
requirements

— compact encodings of exponential-size explored node
set exists

BFS is rarely found in practice

— this does not mean that there are no applications for
which this would be the search methods of choice!

DLS prevents infinite descends on infinite paths

Artificial Intelligence: Systematic Search © JK

sl

UMIVERSITAT i
DES
SAARLAMDES

Working Questions

1.
2.

51

Which concepts are used to describe search problems?

Which concepts are used to describe search algorithms and
search spaces”?

What is the difference between tree and graph search?
What is the set of explored nodes used for?

Why don’t we need a set of explored nodes when the
search space Is a tree?

Can you explain how BFS, DFS, DLS, IDS, UCS work?

What properties are used to characterize search
algorithms?

Compare uninformed search methods based on time
complexity, space complexity, optimality, completeness.

Artificial Intelligence: Systematic Search © JK

	Artificial Intelligence��Systematic (Uninformed) Search
	Agenda
	Recommended Reading
	How can a Goal-based Agent reach a Goal?
	Discrete State-Based Search Problems
	State Spaces
	Illustration
	Terminology
	(Optimal) State Space Solution
	Illustration
	Example: The 8-Puzzle
	Formulating Search Problems
	Blackbox Description
	Implementation – What is a Search Node?
	Implementation – Operations on Search Nodes
	Implementation – Operations on the Open List
	Whitebox Description: Romania Travel Example
	Whitebox Description: Vacuum Cleaner Agent
	Explicit Description: State Space of Vacuum Cleaning Agent
	Search builds a Search Tree when exploring the �State Space Graph
	Terminology to discuss Search Algorithms
	Repeated States
	Redundant Paths
	Tree Search vs. Graph Search
	Comparing Tree Search with Graph Search
	Criteria for Evaluating Search Strategies
	Systematic (Uninformed, Blind) Search Strategies
	(1) Breadth-First Search (BFS)
	BFS Algorithm
	Properties of BFS
	Time and Space Complexity of BFS
	(2) Depth-First Search (DFS)
	Example of DFS�
	DFS Algorithm
	Properties of DFS
	Time and Space Complexity of DFS
	(3) Depth-Limited Search (DLS)
	Depth-Limited Search Algorithm
	Properties and Complexity of DLS
	(4) Iterative Deepening Search (IDS)
	Illustration of IDS
	Illustration Continued
	Properties of IDS
	(5) Uniform-Cost Search (UCS)
	UCS Algorithm
	Example of UCS
	Properties and Complexity of UCS
	UCS and Dijkstra´s Algorithm
	Overview on Algorithm Properties
	Summary
	Working Questions

