
Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Artificial Intelligence
9. CSP, Part I: Basics, and Näıve Search

What to Do When Your Problem is to Satisfy All These Constraints

Jörg Hoffmann Jana Koehler

Online (Summer) Term 2020

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 1/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Agenda

1 Introduction

2 Constraint Networks

3 Assignments, Consistency, Solutions

4 Näıve Backtracking

5 Variable- and Value Ordering

6 Conclusion

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 2/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

A (Constraint Satisfaction) Problem

→ Who’s going to play against who, when and where?

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 4/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Constraint Satisfaction Problems

What is a constraint?

A constraint is a condition that every solution must satisfy.

What is a constraint satisfaction problem?

Given:

A set of variables, each associated with its domain.

A set of constraints over these variables.

Find:

An assignment of variables to values (from the respective domains),
so that every constraint is satisfied.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 5/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

A Constraint Satisfaction Problem

→ Problem: SuDoKu.

Variables: Content of each cell.

Domains: Numbers 1, . . . , 9.

Constraints: Each number only once in each row, column, block.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 6/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Another Constraint Satisfaction Problem

→ (Our Main Illustrative) Problem: Coloring Australia.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: WA, NT, SA, Q, NSW, V, T.

Domains: red, green, blue.

Constraints: Adjacent states must have different colors.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 7/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Another Constraint Satisfaction Problem

→ Problem: Graph Coloring. NP-hard for k = 3.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: Vertices in a graph.

Domains: k different colors.

Constraints: Adjacent vertices must have different colors.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 7/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Bundesliga Constraints

Variables: vAvs.B where A and B are teams, with domain {1, . . . , 34}:
For each match, the (ID of the) “Spieltag” where it is scheduled.

(Some) Constraints:

For all A,B: vAvs.B ≤ 17 < vBvs.A or
vBvs.A ≤ 17 < vAvs.B (each pairing exactly
once in each half-season).

For all A,B,C,D where
{A,B} ∩ {C,D} 6= ∅: vAvs.B 6= vCvs.D

(each team only one match per day).

For all A,B,D: vAvs.B + 1 6= vAvs.D (each
team alternates between home matches and
away matches).

. . .

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 8/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

How to Solve the Bundesliga Constraints?

My personal pre-study attempts:

1 306 nested for-loops (for each of the 306 matches), each ranging from 1 to
306. Within the innermost loop, test whether the current values are (a) a
permutation and, if so, (b) a legal Bundesliga schedule.

→ Estimated runtime (on a Commodore 128): End of this universe, and
the next couple million ones after it . . .

2 Directly enumerate all permutations of the numbers 1, . . . , 306, test for
each whether it’s a legal Bundesliga schedule.

→ Estimated runtime: Maybe only the time span of a few thousand
universes.

3 View this as variables/constraints and use backtracking (This Chapter).

→ Executed runtime: About 1 minute.

How do they actually do it? Modern computers and CSP methods: fractions
of a second. 19th (20th/21st?) century: Combinatorics and manual work.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 9/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Some Applications

Traveling Tournament Problem Scheduling

Timetabling Radio Frequency Assignment

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 10/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Our Agenda for This Topic

→ Our treatment of the topic “Constraint Satisfaction Problems”
consists of Chapters 9 and 10.

This Chapter: Basic definitions and concepts; näıve backtracking
search.

→ Sets up the framework. Backtracking underlies many successful
algorithms for solving constraint satisfaction problems (and,
naturally, we start with the simplest version thereof).

Chapter 10: Inference and decomposition methods.

→ Inference reduces the search space of backtracking.
Decomposition methods break the probem into smaller pieces. Both
are crucial for efficiency in practice.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 11/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Our Agenda for This Chapter

Constraint Networks and Assignments, Consistency, Solutions: How
are constraint satisfaction problems defined? What is a solution?

→ Get ourselves on firm ground.

Näıve Backtracking: How does backtracking work? What are its main
weaknesses?

→ Serves to understand the basic workings of this wide-spread algorithm,
and to motivate its enhancements.

Variable- and Value Ordering: How should we give direction to a
backtracking search?

→ Simple methods for making backtracking aware of the structure of the
problem, and thereby reduce search.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 12/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Constraint Networks: Informal

Constraint Networks: Informal Definition

A constraint network is defined by:

A finite set of variables.

A finite domain for each variable.

A set of constraints (here: binary relations).

→ We’re looking for a solution to the network, i.e., an assignment of
variables to values (from the respective domains), so that every
constraint is satisfied.

Terminology:

It is common to say constraint satisfaction problem (CSP) instead of
constraint network.

Strictly speaking, however, “CSP” is the algorithmic problem of
finding solutions to constraint networks.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 14/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Constraint Networks: Formal

Definition (Constraint Network). A (binary) constraint network is a triple
γ = (V,D,C) where:

V = {v1, . . . , vn} is a finite set of variables.

D = {Dv1 , . . . , Dvn} is a corresponding set of finite domains.

C = {C{u,v}} is a set of binary relations (constraints), where for each
C{u,v} we have u, v ∈ V , u 6= v, and C{u,v} ⊆ Du ×Dv.

We require that C{u,v}, C{x,y} ∈ C =⇒ {u, v} 6= {x, y}. We will write
Cuv instead of C{u,v} for brevity.

Notes:

Cuv = permissible combined assignments to u and v.

Relations are the maximally general formalization of constraints. In
illustrations, we often use abbreviations, e.g. “u 6= v” etc.

There is no point in having two constraints Cuv and C ′
uv constrain the

same variables u and v, because we can replace them by Cuv ∩ C ′
uv.

Cuv is identified by its set {u, v} of variables; the order we choose for the
relation is arbitrary.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 15/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Example: Coloring Australia

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: V = {WA,NT ,SA,Q ,NSW ,V ,T}.
Domains: For all v ∈ V : Dv = {red , green, blue} =: D.

→ If all variables have the same domain, abusing notation we will
write D to denote that “global” domain.
Constraints: Cuv for adjacent states u and v, with Cuv =”u 6= v”,
i.e., Cuv = {(d, d′) ∈ D ×D | d 6= d′}.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 16/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Constraint Networks: Variants

Extensions:

Infinite domains. (E.g., Dv = R in Linear Programming.)

Constraints of higher arity, i.e., relations over k > 2 variables. (E.g.,
propositional CNF satisfiability → Chapter 4.)

Unary Constraints:

A unary constraint is a relation Cv over a single variable, i.e., a
subset Cv ⊆ Dv of that variable’s domain.

A unary constraint Cv is equivalent to reducing the variable domain,
setting Dv := Cv.

Unary constraints are not needed at the formal level. They are often
convenient for modeling, i.e., to state “exceptions”. (E.g., Australia:
D global as on previous slide, but SA 6= green.)

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 17/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Example: SuDoKu

Variables: V = {vij | 1 ≤ i, j ≤ 9}: vij =cell row i column j.
Domains: For all v ∈ V : Dv = D = {1, . . . , 9}.
Unary Constraints: Cvij = {d} if cell i, j is pre-filled with d.
Binary Constraints: Cvijvi′j′ =”vij 6= vi′j′”, i.e.,
Cvijvi′j′ = {(d, d

′) ∈ D ×D | d 6= d′}, for: i = i′ (same row), or

j = j′ (same column), or (d i3e, d
j
3e) = (d i′3 e, d

j′

3 e) (same block).

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 18/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire

→ Problem: Place 8 queens so that they don’t attack each other.

Question!

How to encode this into a constraint network? Variables?
Domains? Constraints?

→ E.g.: Variables: V = {v1, . . . , v8}: vi =row of queen in i-th column.
Domains: Dv = D = {1, . . . , 8}. Constraints: For 1 ≤ i < j ≤ 8:
Cvivj = {(d, d′) ∈ D ×D | d 6= d′ and |d− d′| 6= |i− j|}.
Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 19/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

CSP and the Model-and-Solve Paradigm

(some new constraint-reasoning problem)

describe problem as a constraint network 7→ use off-the-shelf CSP solver

(its solution)

Constraint networks=generic language to describe this kind of
problem.

CSP solvers=generic algorithms solving such problems.

The next time you play SuDoKu, just write the game down in CSP
format and use an off-the-shelf solver.

On one of the practical exercise sheets, this is the kind of thing you
will be doing . . .

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 20/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Assignments and Consistency

Definition (Assignment). Let γ = (V,D,C) be a constraint network.
A partial assignment is a function a : V ′ 7→

⋃
v∈V Dv where V ′ ⊆ V and

a(v) ∈ Dv for all v ∈ V ′. If V ′ = V , then a is a total assignment, or
assignment in short.

→ A partial assignment assigns some variables to values from their
respective domains. A total assignment is defined on all variables.

Definition (Consistency). Let γ = (V,D,C) be a constraint network,
and let a be a partial assignment. We say that a is inconsistent if there
exist variables u, v ∈ V on which a is defined, with Cuv ∈ C and
(a(u), a(v)) 6∈ Cuv. In that case, a violates the constraint Cuv. We say
that a is consistent if it is not inconsistent.

→ Partial assignment inconsistent = “already violates a constraint”.
(Trivially consistent: The empty assignment.)

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 22/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Example: Coloring Australia

Is this partial assignment
consistent? Yes.

Is this partial assignment
consistent? No.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 23/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Solutions

Definition (Solution). Let γ = (V,D,C) be a constraint network. If a
is a total consistent assignment, then a is a solution for γ. If a solution
to γ exists, then γ is solvable; otherwise, γ is inconsistent.

Example “Coloring Australia”:

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: V = {WA,NT ,SA,Q ,NSW ,V ,T}.
Domains: All v ∈ V : Dv = D = {red , green, blue}.
Constraints: Cuv for adjacent states u and v, with
Cuv = {(d, d′) ∈ D ×D | d 6= d′}.
Solution: {WA = red ,NT = green,SA = blue,
Q = red ,NSW = green,V = red ,T = green}.

→ Note: This is not the only solution. E.g., we can permute the colors, and
Tasmania can be assigned an arbitrary color.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 24/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Consistency vs. Extensibility

Definition. Let γ = (V,D,C) be a constraint network, and let a be a
partial assignment. We say that a can be extended to a solution if there
exists a solution a′ that agrees with a on the variables where a is defined.

→ a can be extended to a solution =⇒ a consistent. But not vice versa:

Example “Coloring Australia”:

Can this partial assignment be
extended to a solution? Yes.

Can this partial assignment be
extended to a solution? No.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 25/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Consistency vs. Extensibility

Definition. Let γ = (V,D,C) be a constraint network, and let a be a
partial assignment. We say that a can be extended to a solution if there
exists a solution a′ that agrees with a on the variables where a is defined.

→ a can be extended to a solution =⇒ a consistent. But not vice versa:

Example “4-Queens”:

Can this partial assignment be
extended to a solution? No.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 25/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire

Question!

Which of the following statements imply that the empty
assignment, a0, can be extended to a solution?

(A): a0 is consistent.

(C): There are no binary
constraints.

(B): The network is inconsistent.

(D): The network is solvable.

→ (A): No. Being consistent does not imply being extensible to a solution (cf.
previous slide). For a0 in particular: a0 is always consistent; it can be extended to a
solution if and only if the network is solvable.

→ (B): No. If the network is inconsistent then there are no solutions, so no
assignment can be extended to a solution, in particular not a0.

→ (C): If one of the unary constraints (variable domains) is empty, then the network is
inconsistent and we are in case (B). Otherwise, the network is solvable and a0 is
extensible to a solution.

→ (D): Yes. The empty assignment can be extended to any solution for the network,
if such a solution does exist.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 26/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Computational Complexity of CSP

Input size vs. solution space size: Assume constraint network γ with n
variables, all with domain size k.

Number of total assignments: kn.

Size of description of γ: nk for variables and domains; at most n2

constraints, each of size at most k2 =⇒ O(n2k2).

→ The number of assignments is exponentially bigger than the size of γ.

It is therefore no surprise that:

Theorem (CSP is NP-complete). It is NP-complete to decide whether
or not a given constraint network γ is solvable.

Proof. Membership in NP: Just guess a total assignment a and verify
(in polynomial time) whether a is a solution.

NP-Hardness: The special case of graph coloring (our illustrative
example) is known to be NP-hard.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 27/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire

Can this partial assignment be
extended to a solution? No.

→ The open cells in the 2nd column
can only be filled by 1 and 3. Neither
of these fits into the 2nd row (v22).

Can this partial assignment be
extended to a solution? Yes.

→ v22 = 1, v32 = 3, v35 = 1,
v25 = 2, v15 = 3, v11 = 2, v21 = 6.
(Compare slide 6.)

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 28/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Before We Begin

Basic Concepts

Search: Depth-first enumeration of partial assignments.

Backtracking: Backtrack at inconsistent partial assignments.

Inference: Deducing tighter equivalent constraints to reduce search
space (backtracking will occur earlier on).

Up next: Näıve backtracking, no inference.

Next Chapter: Backtracking with inference.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 30/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Näıve Backtracking

Call with input constraint network γ and the empty assignment a:

function NäıveBacktracking(a) returns a solution, or “inconsistent”
if a is inconsistent then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d ∈ Dv in some order do
a′ := a ∪ {v = d}
a′′ := NäıveBacktracking(a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

→ Backtracking=Recursively instantiate variables one-by-one, backing up out of
a search branch if the current partial assignment is already inconsistent.

→ Why is this better than enumerating, and solution-checking, all total
assignments (cf. slide 9)? If a partial assignment is already inconsistent, then
backtracking does not enumerate any extensions thereof.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 31/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Example: Coloring Australia

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 32/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Näıve Backtracking, Pro and Contra

Pro:

Näıve backtracking is extremely simple. (You can implement it on a
Commodore 128.)

Despite this simplicity, it is much more efficient than enumerating
total assignments. (You can implement it on a Commodore 128 and
solve the Bundesliga.)

Näıve backtracking is complete (if there is a solution, backtracking
will find it).

Contra:

Backtracking does not recognize a that cannot be extended to a
solution, unless a is already inconsistent.
→ Employ inference to improve this! (Chapter 8).

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 33/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Näıve backtracking, Pro and Contra: Illustration

Much more efficient than enumerating total as-
signments: “fill cells one-by-one and stop already
when an illegal row/column/block occurs” vs. “fill
all cells, then check whether it’s a solution”.

Does not recognize a that cannot be extended
to a solution, unless a is already inconsistent:
“don’t think at all, just fill in cells and see where you
get to”. In the present example, we would not even
try to see the issue, and instead just keep filling in
values, e.g. trying to put 5 or 8 into the top left cell.

→ ”Human SuDoKu playing” = lots of inference!
(You want to minimize the number of failed attempts
to keep track of on paper . . .)

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 34/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire

Question!

Say G is a clique of n vertices, and we run backtracking for graph
coloring with n different colors. How big is the search space
(consistent partial assignments) of näıve backtracking?

(A): n

(C): 1 +
∑n−1

i=0 n ∗ · · · ∗ (n− i)
(B): n!

(D): nn

→ (C): 1 for the root. At the first vertex, we have n consistent colors, then n− 1
consistent colors, etc. We need to add up the nodes at each layer of the search tree.

Question!

If G is a line and we order variables left-to-right?

(A): 1 +
∑n−1

i=0 n ∗ · · · ∗ (n− i) (B): 1 +
∑n−1

i=0 n ∗ (n− 1)i

→ (B): At the first vertex, we have n consistent colors; at each later vertex it’s n− 1.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 35/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire, ctd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Question!

Variable order WA,NT ,Q ,NSW ,V ,T ,SA. Tightest upper bound
on näıve backtracking search space size?

(A): 145

(C): 433

(B): 382

(D): 37

→ (B): With this variable order, we have: 3 choices for WA (3 nodes); 2 (consistent!)
choices for NT (2 ∗ 3 = 6 new nodes); 2 choices each for Q ,NSW ,V (12, 24, 48 new
nodes); 3 choices for T (144 new nodes). For each of the 144 leaves, we have either 0
or 1 choices for SA. To get an upper bound, we conservatively assume it’s 1
everywhere, adding another 144 consistent nodes. Plus 1 for the root.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 36/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

What to Order, Where, in Näıve Backtracking

function NäıveBacktracking(γ, a) returns a solution, or “inconsistent”
if a is inconsistent with γ then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d ∈ Dv in some order do
a′ := a ∪ {v = d}
a′′ := NäıveBacktracking(γ, a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

→ The order in which we consider variables and their values may have a
huge impact on search space size!

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 38/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Example: Coloring Australia

WA,NT ,Q as on slide 32 =⇒ 3 ∗ 2 ∗ 2.

Any ideas for better variable orders? For SA,WA,NT it’s 3 ∗ 2 ∗ 1.
→ The “most important/most restricted variables” first.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 39/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Variable- and Value Ordering

Variable Ordering:

Näıve backtracking does not specify in which order the variables are
considered.

That ordering often dramatically influences search space size. (Cf.
previous slide, and slide 36 vs. slide 44.)

Value Ordering:

Näıve backtracking does not specify in which order the values of the
chosen variable are considered.

If no solution exists below current node: Doesn’t matter, we will
have to search the whole sub-tree anyway.

If solution does exist below current node: Does matter. If we always
chose a “correct” value (from a solution) then no backtracking is
needed.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 40/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Variable Ordering Strategy, Part I

A commonly used strategy: most constrained variable first. Always
pick a variable v with minimal |{d ∈ Dv | a ∪ {v = d} is consistent}|.

→ By choosing a most constrained variable v first, we reduce the
branching factor (number of sub-trees generated for v) and thus reduce
the size of our search tree.

→ Extreme case: If |{d ∈ Dv | a ∪ {v = d} is consistent}| = 1, then the
value assignment to v is forced by our previous choices.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 41/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Variable Ordering Strategy, Part II

Another commonly used strategy: most constraining variable first.
Always pick v with maximal |{u ∈ V | a(u) is undefined, Cuv ∈ C}|.

→ By choosing a most constraining variable first, we detect
inconsistencies earlier on and thus reduce the size of our search tree.

Commonly used strategy combination: From the set of most
constrained variables, pick a most constraining variable.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 42/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Value Ordering Strategy

A commonly used strategy: least constraining value first. For variable
v, always pick d ∈ Dv with
minimal |{d′ | d′ ∈ Du, a(u) is undefined, Cuv ∈ C, (d′, d) 6∈ Cuv}|.

Allows 1 value for SA

Allows 0 values for SA

→ By choosing a least constraining value first, we increase the chances
to not rule out the solutions below the current node.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 43/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Questionnaire

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Question!

Variable order SA,NT ,Q ,NSW ,V ,WA,T . Tightest upper bound
on näıve backtracking search space size?

(A): 52

(C): 382

(B): 145

(D): 433

→ (A): With this variable order, we have 3 choices for SA and 2 choices for NT ,
yielding 1 + 3 + 3 ∗ 2 = 10 search nodes and 3 ∗ 2 = 6 tree leaves. For each of
Q ,NSW ,V ,WA, we have only 1 choice, so each adds another layer of 6 nodes. We
have 3 choices for T , adding another 3 ∗ 6 = 18 nodes. This sums up to 52.

→ This is the strategy combination from slide 42. Compare with slide 36!

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 44/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Summary

Constraint networks γ consist of variables, associated with finite domains,
and constraints which are binary relations specifying permissible value
pairs.

A partial assignment a maps some variables to values, a total assignment
does so for all variables. a is consistent if it complies with all constraints.
A consistent total assignment is a solution.

The constraint satisfaction problem (CSP) consists in finding a solution for
a constraint network. This has numerous applications including, e.g.,
scheduling and timetabling.

Backtracking instantiates variables one-by-one, pruning inconsistent partial
assignments.

Variable orderings in backtracking can dramatically reduce the size of the
search tree. Value orderings have this potential (only) in solvable sub-trees.

→ Next Chapter: Inference and decomposition, for improved efficiency.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 46/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Reading

Chapter 6: Constraint Satisfaction Problems, Sections 6.1 and 6.3 [Russell
and Norvig (2010)].

Content: Compared to our treatment of the topic “Constraint Satisfaction
Problems” (Chapters 9 and 10), RN covers much more material, but less
formally and in much less detail (in particular, my slides contain many
additional in-depth examples). Nice background/additional reading, can’t
replace the lecture.

Section 6.1: Similar to my “Introduction” and “Constraint Networks”,
less/different examples, much less detail, more discussion of
extensions/variations.

Section 6.3: Similar to my “Näıve Backtracking” and “Variable- and Value
Ordering”, with less examples and details; contains part of what I cover in
Chapter 10 (RN does inference first, then backtracking). Additional
discussion of backjumping.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 47/48

Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

References I

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Hoffmann and Koehler Artificial Intelligence Chapter 9: Constraint Satisfaction Problems, Part I 48/48

	Introduction
	

	Constraint Networks
	

	Assignments, Consistency, Solutions
	

	Naïve Backtracking
	

	Variable- and Value Ordering
	

	Conclusion
	

	
	References

