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Reminder: Our Agenda for This Topic

→ Our treatment of the topic “Constraint Satisfaction Problems”
consists of Chapters 9 and 10.

Chapter 9: Basic definitions and concepts; näıve backtracking
search.

→ Sets up the framework. Backtracking underlies many successful
algorithms for solving constraint satisfaction problems (and,
naturally, we start with the simplest version thereof).

This Chapter: Inference and decomposition methods.

→ Inference reduces the search space of backtracking.
Decomposition methods break the probem into smaller pieces. Both
are crucial for efficiency in practice.
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Illustration: Inference

Constraint network γ:
Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

→ An additional constraint we can add without losing any solutions? For
example, CWAQ := ”=”. If WA and Q are assigned different colors,
then NT must be assigned the 3rd color, leaving no color for SA.

→ Adding constraints without losing solutions = obtaining an equivalent
network with a “tighter description” and hence with a smaller number of
consistent partial assignments.
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Illustration: Decomposition

Constraint network γ:
Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

→ We can separate this into two independent constraint networks.
Namely? Tasmania is not adjacent to any other state. Thus we can color
Australia first, and assign an arbitrary color to Tasmania afterwards.

→ Decomposition methods exploit the structure of the constraint
network. They identify separate parts (sub-networks) whose
inter-dependencies are “simple” and can be handled efficiently.

→ Extreme case: No inter-dependencies at all, as in our example here.
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Our Agenda for This Chapter

Inference: How does inference work in principle? What are relevant
practical aspects?

→ Fundamental concepts underlying inference, basic facts about its use.

Forward Checking: What is the simplest instance of inference?

→ Gets us started on this subject.

Arc Consistency: How to make inferences between variables whose value
is not fixed yet?

→ Details the canonical advanced inference method.

Decomposition: Constraint Graphs, and Two Simple Cases: How to
capture dependencies in a constraint network? What are “simple cases”?

→ Basic results on this subject.

Cutset Conditioning: What if we’re not in a simple case?

→ Outlines the most easily understandable technique for decomposition in
the general case.
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Inference: Basic Facts

Inference

Deducing additional constraints (unary or binary), that follow from the
already known constraints, i.e., that are satisfied in all solutions.

It’s what you do all the time when playing SuDoKu:

→ Formally: Replace γ by an equivalent and strictly tighter constraint
network γ′. Up next.

Hoffmann and Koehler Artificial Intelligence Chapter 10: Constraint Satisfaction Problems, Part II 9/47



Introduction Inference Fwd Arc Consistency Decomposition Cutsets Conclusion References

Equivalent Constraint Networks

Definition (Equivalence). Let γ = (V,D,C) and γ′ = (V,D′, C ′) be
constraint networks sharing the same set of variables. We say that γ and
γ′ are equivalent, written γ′ ≡ γ, if every solution of γ is a solution of γ′,
and every solution of γ′ is a solution of γ.

γ red

blue

v1

red

blue
v2

red

blue
v3

6= 6=

γ′
red

blue

v1

red

blue
v2

red

blue
v3

6= 6=

6=

Are these constraint networks equivalent? No.

→ Equivalence: ”γ′ has the same solutions as γ”.
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Equivalent Constraint Networks

Definition (Equivalence). Let γ = (V,D,C) and γ′ = (V,D′, C ′) be
constraint networks sharing the same set of variables. We say that γ and
γ′ are equivalent, written γ′ ≡ γ, if every solution of γ is a solution of γ′,
and every solution of γ′ is a solution of γ.

γ red

blue

v1

red

blue
v2

red

blue
v3

6= 6=

γ′
red

blue

v1

red

blue
v2

red

blue
v3

6= 6=

=

Are these constraint networks equivalent? Yes.

→ Equivalence: ”γ′ has the same solutions as γ”.
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Tightness

Definition (Tightness). Let γ = (V,D,C) and γ′ = (V,D′, C ′) be constraint
networks sharing the same set of variables. We say that γ′ is tighter than γ,
written γ′ v γ, if:

(i) For all v ∈ V : D′
v ⊆ Dv.

(ii) For all u 6= v ∈ V : either Cuv 6∈ C or C ′
uv ⊆ Cuv.

γ′ is strictly tighter than γ, γ′ @ γ, if at least one of these inclusions is strict.

γ red
blue

v1

red
blue

v2
red
blue

v3

6= 6=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

6= 6=

6=

Here, we do have γ′ v γ.

→ Tightness: “γ′ has the same constraints as γ, plus some”.
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Tightness

Definition (Tightness). Let γ = (V,D,C) and γ′ = (V,D′, C ′) be constraint
networks sharing the same set of variables. We say that γ′ is tighter than γ,
written γ′ v γ, if:

(i) For all v ∈ V : D′
v ⊆ Dv.

(ii) For all u 6= v ∈ V : either Cuv 6∈ C or C ′
uv ⊆ Cuv.

γ′ is strictly tighter than γ, γ′ @ γ, if at least one of these inclusions is strict.
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red
blue

v2
red
blue

v3

6= 6=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

6=

=

Here, we do not have γ′ v γ.

→ Tightness: “γ′ has the same constraints as γ, plus some”.
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Equivalence + Tightness = Inference

Proposition. Let γ and γ′ be constraint networks s.t. γ′ ≡ γ and
γ′ @ γ. Then γ′ has the same solutions as, but less consistent partial
assignments than, γ.

→ γ′ is a better encoding of the underlying problem.

γ red

blue

v1

redv2 blue v3

6= 6=

γ′
red

blue

v1

redv2 blue v3

6= 6=

=

→ a cannot be extended to a solution (neither in γ nor in γ′ because
they’re equivalent). a is consistent with γ, but not with γ′.
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How to Use Inference?

Inference as a pre-process:

Just once before search starts.

Little runtime overhead, little pruning power. Not considered here.

Inference during search:

At every recursive call of backtracking.

Strong pruning power, may have large runtime overhead.

Search vs. Inference

The more complex the inference, the smaller the number of search nodes,
but the larger the runtime needed at each node.

Encode partial assignment as unary constraints (i.e., for a(v) = d,
set the unary constraint Dv := {d}), so that inference reasons about
the network restricted to the commitments already made.

Hoffmann and Koehler Artificial Intelligence Chapter 10: Constraint Satisfaction Problems, Part II 13/47



Introduction Inference Fwd Arc Consistency Decomposition Cutsets Conclusion References

Backtracking With Inference

function BacktrackingWithInference(γ, a) returns a solution, or “inconsistent”
if a is inconsistent then return “inconsistent”
if a is a total assignment then return a

γ′ := a copy of γ /* γ′ = (V,D′, C′) */
γ′ := Inference(γ′)
if exists v with D′

v = ∅ then return “inconsistent”

select some variable v for which a is not defined
for each d ∈ copy of D′

v in some order do
a′ := a ∪ {v = d}; D′

v := {d} /* makes a explicit as a constraint */
a′′ := BacktrackingWithInference(γ′, a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

Inference(): Any procedure delivering a (tighter) equivalent network.

Inference typically prunes domains; indicate unsolvability by D′
v = ∅.

When backtracking out of a search branch, retract the inferred constraints:
these were dependent on a, the search commitments so far.
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Questionnaire

Constraint network γ:
Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Question!

Which modifications yield an equivalent and strictly tighter γ′?

(A): CWAQ := ” 6=”

(C): DWA := {red , blue}
(B): CWAQ := ”=”

(D): DQ := {green}

→ (C) and (D): No. Colors can be permuted in solutions, so fixing them is not
equivalence-preserving.

→ (A): No. There are solutions in which WA and Q have the same value.

→ (B): Yes (cf. slide 5). If WA and Q are assigned different values, then NT must be
assigned the 3rd value, and all 3 values are ruled out for SA. Thus every solution
assigns WA and Q the same value, and γ′ is equivalent to γ.
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Forward Checking

Inference(), version 1: Forward Checking

function ForwardChecking(γ, a) returns modified γ
for each v where a(v) = d′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d | d ∈ Du, (d, d

′) ∈ Cuv}
return γ

WA NT Q NSW V SA T
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Forward Checking: Discussion

Properties:

Forward checking is sound: Its tightening of constraints does not
rule out any solutions. In other words: it guarantees to deliver an
equivalent network.
→ Recall here that the partial assignment a is represented as unary
constraints in the network γ to which forward checking is applied.
(And please excuse the slight arguments-mismatch with the call of
“Inference(γ′)” on slide 14.)

Incremental computation: Instead of the first for-loop, use only the
2nd one every time a new assignment a(v) = d′ is added.

Practice:

Cheap but useful inference method.

Rarely a good idea to not use forward checking (or a stronger
inference method subsuming it).

→ Up next: A stronger inference method (subsuming Forward Checking).

Hoffmann and Koehler Artificial Intelligence Chapter 10: Constraint Satisfaction Problems, Part II 18/47



Introduction Inference Fwd Arc Consistency Decomposition Cutsets Conclusion References

Questionnaire

Here and in what follows: Underlined values = values set in a, i.e.,
chosen by backtracking.

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

2

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Question!

Which inferences does forward checking make, for each of these
partial assignments?

→ Left: None, as there are no assignments. Middle: Dv2 := {2, 3} then stop. Right:
Dv2 := {3} then stop! Forward Checking makes inferences only for assigned variables,
not for ones whose domain has become singleton. (One could of course do that, but
(a) this takes more runtime; and (b) while forward checking is the simplest possible
method, it already is enough for many purposes, see slides 35 and 40.)
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When Forward Checking is Not Good Enough

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

=⇒
1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

=⇒ ?
1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

WA NT Q NSW V SA T

⇓?

→ Forward checking makes inferences only “from assigned to
unassigned” variables.
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Arc Consistency: Definition

Definition (Arc Consistency). Let γ = (V,D,C) be a constraint network.
(i) A variable u ∈ V is arc consistent relative to another variable v ∈ V if

either Cuv 6∈ C, or for every value d ∈ Du there exists a value d′ ∈ Dv

such that (d, d′) ∈ Cuv.
(ii) The network γ is arc consistent if every variable u ∈ V is arc consistent

relative to every other variable v ∈ V .

→ Arc consistency = for every domain value and constraint, at least one value
on the other side of the constraint “works”.

→ Note the asymmetry between u and v: arc consistency is “directed”.

Examples: (previous slide)

On top, middle, is v3 arc consistent relative to v2? No. For values 1 and 2,
Dv2 does not have a value that works.

And on the right? Yes. (But v2 is not arc consistent relative to v3.)

SA is not arc consistent relative to NT in the Australia example, 3rd row.
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Enforcing Arc Consistency: General Remarks

Inference(), version 2: ”Enforcing Arc Consistency” = removing
variable domain values until γ is arc consistent. (Up next)

Note: (Assuming such an inference method AC(γ))

AC(γ) is sound: guarantees to deliver an equivalent network.

→ If, for d ∈ Du, there does not exist a value d′ ∈ Dv such that
(d, d′) ∈ Cuv, then u = d cannot be part of any solution.

AC(γ) subsumes forward checking: AC(γ) v ForwardChecking(γ).
(Recall from slide 11 that γ′ v γ means γ′ is tighter than γ.)

→ Forward checking (cf. slide 17) removes d from Du only if there
is a constraint Cuv such that Dv = {d′} (when v was assigned the
value d′), and (d, d′) 6∈ Cuv. Clearly, enforcing arc consistency of u
relative to v removes d from Du as well.
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Enforcing Arc Consistency for One Pair of Variables

Algorithm enforcing consistency of u relative to v:

function Revise(γ, u, v) returns modified γ
for each d ∈ Du do

if there is no d′ ∈ Dv with (d, d′) ∈ Cuv then Du := Du \ {d}
return γ

→ Runtime, if k is maximal domain size: O(k2), based on
implementation where the test “(d, d′) ∈ Cuv?” is constant time.

Example: Revise(γ, v3, v2)

1

v1

2 3v2

1 2 3 v3

1 2 3 v3

2 3 v32 3 v33 v33 v33 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

Algorithm enforcing consistency of u relative to v:

function Revise(γ, u, v) returns modified γ
for each d ∈ Du do

if there is no d′ ∈ Dv with (d, d′) ∈ Cuv then Du := Du \ {d}
return γ

→ Runtime, if k is maximal domain size: O(k2), based on
implementation where the test “(d, d′) ∈ Cuv?” is constant time.

Example: Revise(γ, v3, v2)

1

v1

2 3v2

1 2 3 v31 2 3 v32 3 v3

2 3 v3

3 v33 v33 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

Algorithm enforcing consistency of u relative to v:

function Revise(γ, u, v) returns modified γ
for each d ∈ Du do

if there is no d′ ∈ Dv with (d, d′) ∈ Cuv then Du := Du \ {d}
return γ

→ Runtime, if k is maximal domain size: O(k2), based on
implementation where the test “(d, d′) ∈ Cuv?” is constant time.

Example: Revise(γ, v3, v2)

1

v1

2 3v2

1 2 3 v31 2 3 v32 3 v32 3 v33 v33 v3

3 v3

v1 < v2

v2 < v3
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AC-1

Idea: Apply pairwise revisions up to a fixed point.

function AC-1(γ) returns modified γ
repeat

changesMade := False
for each constraint Cuv do

Revise(γ, u, v) /* if Du reduces, set changesMade := True */
Revise(γ, v, u) /* if Dv reduces, set changesMade := True */

until changesMade = False
return γ

Obviously, this enforces arc consistency.

Runtime, if n variables, m constraints, k maximal domain size:
O(mk2 ∗ nk): mk2 for each inner loop, fixed point reached at the
latest once all nk variable values have been removed.

Redundant computations: u and v are revised even if their domains
haven’t changed since the last time.
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AC-3

Idea: Remember the potentially inconsistent variable pairs.

function AC-3(γ) returns modified γ
M := ∅
for each constraint C{uv} ∈ C do
M :=M ∪ {(u, v), (v, u)}

while M 6= ∅ do
remove any element (u, v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint C{w,u} ∈ C where w 6= v do
M :=M ∪ {(w, u)}

return γ

AC-3(γ) enforces arc consistency because? At any time during the
while-loop, if (u, v) 6∈M then u is arc consistent relative to v.

Why only “where w 6= v”? v is the reason why Du just changed. Thus, if
v was arc consistent relative to u before, then that still is so: the values
just removed from Du did not match any values from Dv anyway.
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AC-3: Example

Example: (y%x = 0: y modulo x is 0, i.e., y can be divided by x)

2 5

v1

2 4v2 2 5 v3

v2%v1 = 0 v3%v1 = 0

M
(v2, v1)
(v1, v2)
(v3, v1)
(v1, v3)
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AC-3: Runtime

Theorem (Runtime of AC-3). Let γ = (V,D,C) be a constraint
network with m constraints, and maximal domain size k. Then AC-3(γ)
runs in time O(mk3).

Proof. Each call to Revise(γ, u, v) takes time O(k2) so it suffices to
prove that at most O(mk) of these calls are made.

The number of calls to Revise(γ, u, v) is the number of iterations of the
while-loop, which is at most the number of insertions into M . Consider
any constraint Cuv.

Two variable pairs corresponding to Cuv are inserted in the for-loop. In
the while loop, if a pair corresponding to Cuv is inserted into M , then
beforehand the domain of either u or v was reduced, which happens at
most 2k times. Thus we have O(k) insertions per constraint, and O(mk)
insertions overall, as desired.
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Questionnaire

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

2

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Question!

Which inferences does enforcing arc consistency make, for each of
these partial assignments?

→ Left: Revise(2, 3) reduces Dv2 to {1, 2}, Revise(2, 1) then reduces it to {2}. From
here, Revise(1, 2) and Revise(3, 2) reduce each domain to a singleton. Thus enforcing
arc consistency solves this network.

→ Middle: Same. (Special case of Left).

→ Right: Revise(2, 3), Revise(2, 1) reduces Dv2 to ∅. Thus enforcing arc consistency
determines that this partial assignment cannot be extended to a solution. (In contrast
to Forward Checking, cf. slide 19.)
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Reminder: The Big Picture

Say γ is a constraint network with n variables and maximal domain
size k. To solve γ, kn total assignments must be tested in the worst
case.

Inference: One method to try to avoid, or at least ameliorate, this
explosion in practice.

→ Often, from an assignment to some variables, we can easily make
inferences regarding other variables.

Decomposition: Another method to try to avoid, or at least
ameliorate, this explosion in practice.

→ Often, we can exploit the structure of a network to decompose it
into smaller parts that are easier to solve.

→ What is “structure”, and how to “decompose”?
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“Structure”: Constraint Graphs

Definition (Constraint Graph). Let γ = (V,D,C) be a constraint
network. The constraint graph of γ is the undirected graph whose
vertices are the variables V , and that has an arc {u, v} if and only if
Cuv ∈ C.

Example “Coloring Australia”:

Victoria

WA

NT

SA

Q

NSW

V

T

Hoffmann and Koehler Artificial Intelligence Chapter 10: Constraint Satisfaction Problems, Part II 32/47



Introduction Inference Fwd Arc Consistency Decomposition Cutsets Conclusion References

“Decomposition” 1.0: Disconnected Constraint Graphs

Theorem (Disconnected Constraint Graphs). Let γ = (V,D,C) be a
constraint network. Let ai be a solution to each connected component Vi
of the network’s constraint graph. Then a :=

⋃
i ai is a solution to γ.

Proof. a satisfies all Cuv where u and v are inside the same connected
component. The latter is the case for all Cuv.

→ If two parts of γ are not connected, then they are independent.

Examples:

Victoria

WA

NT

SA

Q

NSW

V

T

→ Color Tasmania separately.

γ with n = 40 variables, each domain
size k = 2. Four separate connected
components each of size 10.

Reduction of worst-case when using
decomposition:

→ No decomposition: 240. With
decomposition: 4 ∗ 210. Gain: 228.
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“Decomposition” 2.0: Acyclic Constraint Graphs

Theorem (Acyclic Constraint Graphs). Let γ = (V,D,C) be a
constraint network whose constraint graph is acyclic. Then we can find a
solution for γ, or prove γ to be inconsistent, in time low-order polynomial
in the size of γ. (Proof: See next slide.)

→ Constraint networks with acyclic constraint graphs can be solved in
(low-order) polynomial time.

Examples:

Victoria

WA

NT

SA

Q

NSW

V

T

→ Not acyclic. But: see next

section.

γ with n = 40 variables, each domain
size k = 2. Acyclic constraint graph.

Reduction of worst-case when using
decomposition:

→ No decomposition: 240. With
decomposition: low-order polynomial
in n and k.
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Acyclic Constraint Graphs: How To

Algorithm: AcyclicCG(γ)

1 Obtain a directed tree from γ’s constraint graph, picking an
arbitrary variable v as the root, and directing arcs outwards.1

2 Order the variables topologically, i.e., such that each vertex is
ordered before its children; denote that order by v1, . . . , vn.

3 for i := n, n− 1, . . . , 2 do:
1 Revise(γ, vparent(i), vi).
2 if Dvparent(i) = ∅ then return “inconsistent”

→ Now, every variable is arc consistent relative to its children.

4 Run BacktrackingWithInference with forward checking, using the
variable order v1, . . . , vn.

→ This algorithm will find a solution without ever having to
backtrack! (Proof: Possible exercise for you)

1We assume here that γ’s constraint graph is connected. If it is not, do this and
the following for each connected component separately.
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Input network γ.
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Step 1: Directed tree for root v1.

Step 2: Order v1, v2, v3.
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1 2 3

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v2, v3).
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v1, v2).
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1

v1

2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v1) := 1

and forward checking.
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v2) := 2

and forward checking.
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AcyclicCG(γ): Example

Example AcyclicCG() execution:

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v3) := 3

(and forward checking).
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Questionnaire

Constraint graph of γ:

Question!

How many different directed trees can we obtain/how many calls
to Revise() are done for each?

(A): 6 / 5

(C): 24 / 5

(B): 4 / 5

(D): 6 / Between 4 and 6

→ (A) is correct. Any vertex can be picked as the root, and once the root is picked the
directed tree is unique. The number of calls to Revise() is the number of arcs in the
tree and hence always is the number of arcs in the original constraint graph. Example:

→ Revise(D,F ), Revise(D,E), Revise(B,D),
Revise(B,C), Revise(A,B).
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“Almost” Acyclic Constraint Graphs

Example “Coloring Australia”:

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset Conditioning: Idea

(1) Choose the variable order so that removing the first d variables renders the
constraint graph acyclic.

→ Then we won’t have to search deeper than d, because:

(2) Recursive call of backtracking on a s.t. the sub-graph of the constraint
graph induced by {v ∈ V | a(v) is undefined} is acyclic:

→ We can solve the remaining sub-problem with AcyclicCG().
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“Decomposition” 3.0: Cutset Conditioning

Definition (Cutset). Let γ = (V,D,C) be a constraint network, and V0 ⊆ V .
V0 is a cutset for γ if the sub-graph of γ’s constraint graph induced by V \ V0 is
acyclic. V0 is optimal if its size is minimal among all cutsets for γ.

V0 := a cutset; return CutsetConditioning(γ, V0, ∅)
function CutsetConditioning(γ, V0, a) returns a solution, or “inconsistent”
γ′ := a copy of γ; γ′ := ForwardChecking(γ′, a)
if ex. v with D′

v = ∅ then return “inconsistent”
if ex. v ∈ V0 s.t. a(v) is undefined then select such v

else a′ := AcyclicCG(γ′); if a′ 6= “inconsistent” then return a ∪ a′
else return “inconsistent”

for each d ∈ copy of D′
v in some order do

a′ := a ∪ {v = d}; D′
v := {d};

a′′ := CutsetConditioning(γ′, V0, a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

Forward Checking required so that a ∪ a′ is consistent in γ.

Runtime is exponential only in |V0|, not in |V | . . . !

Finding optimal cutsets is NP-hard, but practical approximations exist.
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Questionnaire

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Question!

With V0 = {SA}, how many recursive calls to CutsetConditioning()
are made / how many calls of Revise() are made?

(A): 1 / 4

(C): 3 / 12

(B): 2 / 4

(D): 4 / 12

→ (B) is correct. The first call to CutsetConditioning() is with empty a. The second
call with some color assigned to SA; the remaining sub-problem is solvable so
AcyclicCG() returns a solution and the algorithm stops. The single call to AcyclicCG()
uses 4 calls to Revise(): the number of arcs, cf. slide 37.
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The Example in Detail

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Algorithm trace: with V0 = {SA}

Say CutsetConditioning paints SA blue. After forward checking:

Say WA is the root and our order is WA,NT,Q,NSW, V, T .

Calls of Revise() from children to parents: No values are removed.

Backtracking with forward checking, when choosing to paint WA red:

etc. . . .
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Summary

γ and γ′ are equivalent if they have the same solutions. γ′ is tighter than
γ if it is more constrained.

Inference tightens γ without losing equivalence, during backtracking. This
reduces the amount of search needed; that benefit must be traded off
against the runtime overhead for making the inferences.

Forward checking removes values conflicting with an assignment already
made.

Arc consistency removes values that do not comply with any value still
available at the other end of a constraint. This subsumes forward checking.

The constraint graph captures the dependencies between variables.
Separate connected components can be solved independently. Networks
with acyclic constraint graphs can be solved in low-order polynomial time.

A cutset is a subset of variables removing which renders the constraint
graph acyclic. Cutset decomposition backtracks only on such a cuset, and
solves a sub-problem with acyclic constraint graph at each search leaf.
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Topics We Didn’t Cover Here

Path consistency: Generalizes arc consistency to size-k subsets of variables.

Tree decomposition: Instead of instantiating variables until the leaf nodes
are trees, distribute the variables and constraints over sub-CSPs whose
connections form a tree.

Backjumping: Like backtracking, but with ability to back up across several
levels (to a previous assignment identified to be responsible for failure).

No-Good Learning: Inferring additional constraints based on information
gathered during backtracking.

Local search: In space of total (but not necessarily consistent)
assignments. (→ E.g., 8-Queens in Chapter 3)

Tractable CSP: Classes of CSPs that can be solved in polynomial time.

Global Constraints: Constraints over many/all variables, with associated
specialized inference methods.

Constraint Optimization Problems (COP): Utility function over solutions,
need an optimal one.

Hoffmann and Koehler Artificial Intelligence Chapter 10: Constraint Satisfaction Problems, Part II 45/47



Introduction Inference Fwd Arc Consistency Decomposition Cutsets Conclusion References

Reading

Chapter 6: Constraint Satisfaction Problems, Sections 6.2, 6.3.2, and 6.5
[Russell and Norvig (2010)].

Content: Compared to our treatment of the topic “Constraint Satisfaction
Problems” (Chapters 9 and 10), RN covers much more material, but less
formally and in much less detail (in particular, my slides contain many
additional in-depth examples). Nice background/additional reading, can’t
replace the lecture.

Section 6.3.2: Somewhat comparable to my “Inference” (except that
equivalence and tightness are not made explicit in RN) together with
“Forward Checking”.

Section 6.2: Similar to my “Arc Consistency”, less/different examples,
much less detail, additional discussion of path consistency and global
constraints.

Section 6.5: Similar to my “Decomposition: Constraint Graphs, and Two
Simple Cases” and “Cutset Conditioning”, less/different examples, much
less detail, additional discussion of tree decomposition.
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