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Agenda

▪ Searching very large search spaces

▪ Local extrema & plateaus

▪ Randomized search strategies

– Random restarts and moves

– Tabu search

▪ Algorithms

(1) Hill climbing

(2) Simulated Annealing

(3) UCT

(4) Genetic Algorithms

(5) Ant Colony Optimization
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Recommended Reading

▪ AIMA Chapter 4: Beyond Classical Search

– 4.1 Local Search Algorithms and Optimization Problems
• 4.1.1 Hill-climbing search

• 4.1.2 Simulated annealing

• 4.1.4 Genetic algorithms

▪ Papers:

– A Survey of Monte Carlo Tree Search Methods
C. Browne et. al.

IEEE Transactions on Computational Intelligence and AI in games (2012)

– Finite-time Analysis of the Multiarmed Bandit Problem
P. Auer, N. Cesa-Bianchi, P. Fischer

Machine Learning 47.2-3 (2002): 235-256.

– Bandit based Monte-Carlo Planning
Levente Kocsis and Csaba Szepesvári

European conference on machine learning. Springer (2006)
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Searching Very Large Search Spaces

▪ For 𝑛 cables, we have (2𝑛)! potential insertion orders

𝒏 = 𝟐: 4! = 24, 𝒏 = 𝟒𝟎: 10120

▪ No chance to systematically or heuristically explore such 

spaces!

4

1 4 5 2 3 6

Artificial Intelligence: Local and Stochastic Search



©  JK 

Basic Idea of Local Search

5 Artificial Intelligence: Local and Stochastic Search

▪ Start somewhere in the search space

▪ Use an evaluation function for each node

▪ Move towards better evaluated nodes

▪ Sometimes, move elsewhereEvaluation

Current

state
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(1) Hillclimbing

(Steepest Ascent Search, Greedy Local Search)

▪ Neither complete nor optimal

▪ Time complexity: Stops once no better evaluated neighbor 

can be found (or it encounters a time out)

▪ Space complexity: 𝑂(𝑏) (current state + neighbors)

▪ In practice, can find good solutions very fast
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State-Space Landscape

▪ Plateaus, ridges, local maxima
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Local Maxima and Minima

▪ Trap the algorithms in nodes with suboptimal solutions

– once in such a node, all successors have poorer

evaluations

8 Artificial Intelligence: Local and Stochastic Search
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Plateaus

▪ Cause the algorithm to wander around without any direction

– all nodes have equally good evaluations

9

how to escape a  

plateau when learning, 

training sports, ….
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Ridges

▪ A sequence of local maxima not directly connected to each 

other
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Escape Techniques

▪ Tabu Search: Add a memory to a local search algorithm to 

remember certain moves

– keep a list of forbidden (visited) states

– avoid moves that lead to previously explored regions of 

the search space
• short term memory: do not reverse a previous move

– update this list while search progresses

▪ Random Restart: Start over when no progress is made

– do a random restart from a randomly generated initial 

state performing many hill climbing searches
• theoretically complete, because it will eventually generate the 

goal state as an initial state

▪ Random Walk: “Inject noise” = pick a worse or equal 

evaluated node with a certain probability 11
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Sucess of Escape Strategies

▪ Which strategies and parameters are successful depends 

on the 

– problem class and 

– the structure of the search space

▪ Few local maxima and plateaus, random restart hillclimbing

finds good solutions very quickly

▪ Most difficult (NP-hard) problems have an exponential 

number of local maxima
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Searching the Solution Space

▪ In many applications, we do not care about the path to the 

solution

– 8 queens: the correct placement of queens on the board

– cable tree wiring: a robust and fast insertion order

– vacuum world: a plan that cleans all rooms

▪ We can start with some randomly generated (partial) 

solution and try to improve it

– take a solution node

– generate its neighbors (if they have better evaluations)

– do not keep information about the search path
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Hillclimbing 8 Queens

▪ State: distribution of all 8 queens, one in each column

▪ ℎ: number of pairs of queens attacking each other

▪ Successor: select a column and move the queen to another 

square in the same column

14

ℎ = 17
the best successors have

ℎ = 12

hill climbing chooses

randomly among the best

successors
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Another Hill Climbing Strategy

▪ Select a column and move the queen to the square with the 

fewest conflicts

15 Artificial Intelligence: Local and Stochastic Search
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Local Minimum in 8 Queens

▪ 19 possible moves

▪ ℎ = 1, no possible move can decrease ℎ

➢ Hillclimbing gets stuck on 86% of all 8 queens problems and 

can solve 14%

16

- problem has 1014 states (random

distributions of the 8 queens on an 

8x8 board)

- on randomly generated instances, 

hillclimbing needs on average 4 

steps to find a solution, 3 to get 

stuck in local minimum
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Random Restarts and Random Walks on 8 Queens

▪ Success rate of a single run of hillclimbing on 8 queens

– p=14%, take 1/0.14 = 7.14 restarts

– finds a solution under a minute for 3 million queens

▪ Add up to 100 sideway moves (to nodes with equal

evaluation) to 8 queens in a singe run of the algorithm

– hillclimbing can then solve 94% of all instances

– In average, requires 21 steps for a solution and 64 steps

for a failure

➢ Successful local search algorithms combine randomness

(exploration) with following the heuristic (exploitation)
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(2) Simulated Annealing

▪ T (a „temperature“) gradually decreases (cools down)

▪ Slow decrease in probability of accepting worse solutions
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https://commons.wikimedia.org/w/index.php?curid=25010763

𝑓 𝑡 = 𝑒−𝑡

https://commons.wikimedia.org/w/index.php?curid=25010763
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(3) UCT: A Stochastic Search Algorithm

▪ L. Kocsis and C. Szepesvári: Bandit based Monte-Carlo 

Planning, European Conference on Machine Learning, 2006

20

Upper Confidence 

Bounds for Trees 

(UCT)

Monte Carlo Tree Search 

(MCTS)

Upper Confidence Bounds 

(UCB)
+
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Monte Carlo Algorithms

▪ Perform repeated random sampling to determine numerical 

estimations of unknown parameters

– developed by Stanislaw Ulam and John von Neumann in 

the Manhattan project to run computer simulations for 

risk analysis in the 1940s

21 Artificial Intelligence: Local and Stochastic Search
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Estimating PI by Observing Rain Drops on a Board

▪ Area of circle is 𝜋𝑟2

▪ Area of square is 𝑤𝑖𝑑𝑡ℎ2 = (2𝑟)2= 4𝑟2

▪ If we divide the area of the circle by the 

area of the square we get Τ𝜋 4

▪ The same ratio can be used between the 

number of points within the square and 

the number of points within the circle

▪ “Law of large numbers”

22

𝜋 ≈ 4 ∙
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
https://www.101computing.net/estimating-

pi-using-the-monte-carlo-method/
Artificial Intelligence: Local and Stochastic Search
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Monte Carlo Tree Search (MCTS)

▪ Method for finding optimal decisions in a given domain by 

taking random samples in the decision space and building a 

search tree according to the results

– statistical anytime algorithm for which more computing 

power generally leads to better performance

– can be used with little or no domain knowledge

▪ Since the 1990s, Monte Carlo ideas are applied to game 

playing and planning problems in AI

– the method of choice for very large search spaces 

– 10120 and beyond

– many variations and improvements exist

23 Artificial Intelligence: Local and Stochastic Search
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The Basic MCTS Process

▪ A tree is built in an incremental and 

asymmetric manner:

▪ For each iteration of the algorithm, a 

tree policy is used to find the next node 

to be expanded of the current tree

▪ The tree policy attempts to balance 

considerations of exploration (look in 

areas that have not been well sampled 

yet) and exploitation (look in areas 

which appear to be promising)

▪ A simulation is run from the selected 

node and the search tree is updated 

according to the result in the goal state
24

select

node

goal state

simulation: 

executing

actions
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Which Node to Select? ► Bandit Problems

▪ Class of sequential decision problems, in which one needs 

to choose amongst K actions in order to maximize the 

cumulative reward by consistently taking the optimal action

– K arms of a multi-armed bandit slot machine

– choice of action is difficult as the underlying reward distributions 

are unknown, and potential rewards must be estimated based on 

past observations

▪ Exploitation/Exploration Dilemma

– need to balance the exploitation of the action currently believed to 

be optimal with the exploration of other actions that currently 

appear suboptimal, but may turn out to be superior in the long run

• Which arm of the bandit to play next?

• UCB 1 Algorithm
• Auer et al: Finite-time Analysis of the Multiarmed Bandit Problem, 2002

25 Artificial Intelligence: Local and Stochastic Search
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Overview of Phases in MCTS-based Algorithms

26

(1)

Selection

(3)

Simulation

(4)

Backpropagation

Artificial Intelligence: Local and Stochastic Search

(2)

Expansion

𝑛

𝑛′1

Which branch is

the most

promising once

we have tried all 

at least once?

Expand towards

an arbitrary

unexplored child

in the selected

branch

Randomly

execute actions

until a goal state

(or terminal state) 

is reached

Update the

reward towards

the root node

Tree Policy

Default Policy

𝑛′2 𝑛′3

https://www.youtube.com/watch?v=lhFXKNyA0QA 

https://www.youtube.com/watch?v=Fbs4lnGLS8M

https://www.youtube.com/watch?v=EGN1KAjtNS4
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UCT Algorithm: Overview

27

last node reached 

during the TreePolicy

stage

reward for the goal 

state reached by 

running the default 

policy from state 𝑠(𝑛𝑙)

the action 𝑎 that leads to the best child of the root node 𝑛0
- exact definition of “best” is defined by the implementation

Artificial Intelligence: Local and Stochastic Search

Node count

Sum of all 

rewards of paths 

through 𝑛0
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Using UCB1 as Tree Policy

▪ How to select the next node 𝑛´ for selection?

– Take the best UCB1 value

28

c is a constant, adjust to lower or 

increase the amount of exploration
Artificial Intelligence: Local and Stochastic Search

encourages the exploration

of less visited choices

encourages the exploitation of 

higher-reward choices

Remember

Q: reward sum

N: visit count
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(1)+(2) Selection + Expansion: The Tree Policy

29

A node is expandable if it represents a nonterminal state 

and has unexplored children

Artificial Intelligence: Local and Stochastic Search
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(3) Simulation: The Default Policy

▪ Execution of actions from the selected node until a goal

state is reached using a default policy

– simply applying actions randomly or

– applying a statistically biased sequence of actions

▪ Once a goal state is reached, the simulation finishes, the

goal state is evaluated and the evaluation is backed up to

the ancestors of the selected node

– No need to evaluate intermediate states!

30 Artificial Intelligence: Local and Stochastic Search
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(4) Backpropagation

▪ Each node’s visit count is incremented, and its Q-value 

updated 

▪ The reward value may be 

– a discrete (win/draw/loss) result or 

– a continuous reward value 

– Usually normalized to the interval [0,1]

31 Artificial Intelligence: Local and Stochastic Search
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Summary of Algorithm

▪ Download the complete

description of the

algorithm in pseudo code 

from CMS > Materials > 

Supplementary Materials

Artificial Intelligence: Local and Stoachastic Search32
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N(n0) = 0
Q(n0) = 0

n0/s0

Create the root node and select it

(1) SELECTION
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N(n1) = 0
Q(n1) = 0

a1 a2

N(n0) = 0
Q(n0) = 0

n0/s0

n1/s1 s2

Apply tree policy: n0 has unexplored children, pick an untried action

further child states 

are represented by 

dotted lines

(2) EXPANSION
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N(n1) = 0
Q(n1) = 0

a1

N(n0) = 0
Q(n0) = 0

n0/s0

n1/s1

a2

s2

(1) SELECTION
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terminal state sg

with reward 0.2

sg

N(n0) = 0
Q(n0) = 0

a1

n0/s0

n1/s1
N(n1) = 0
Q(n1) = 0

Run a simulation from the selected, unexplored node

a2

s2

(3) SIMULATION
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r = 0.2

N(n0) = 0
Q(n0) = 0

N(n1) = 1
Q(n1) = 0.2

a1

terminal state sg

with reward 0.2

sg

n0/s0

n1/s1

Backpropagate the reward up the path (only to nodes in the tree)

a2

s2

(4) BACKPROPAGATION
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N(n0) = 1
Q(n0) = 0.2

N(n1) = 1
Q(n1) = 0.2

a1

terminal state sg

with reward 0.2

sg

r = 0.2

r = 0.2

n0/s0

n1/s1

Backpropagate the reward up the path (only to nodes in the tree)

a2

s2

(4) BACKPROPAGATION
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N(n0) = 1
Q(n0) = 0.2

N(n1) = 1
Q(n1) = 0.2

a1

n0/s0

n1/s1

Search Tree after First Round
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N(n1) = 1
Q(n1) = 0.2

N(n2) = 0
Q(n2) = 0

a1 a2

n0/s0

n1/s1 n2/s2

N(n0) = 1
Q(n0) = 0.2

Expand unexplored child of selected node

(2) EXPANSION
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N(n1) = 1
Q(n1) = 0.2

N(n2) = 0
Q(n2) = 0

a1 a2

n0/s0

n1/s1 n2/s2

N(n0) = 1
Q(n0) = 0.2

(2) EXPANSION
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n2/s2
N(n1) = 1

Q(n1) = 0.2
N(n2) = 0
Q(n2) = 0

a1 a2

terminal state sg

with reward 0.1
sg

n0/s0

n1/s1

N(n0) = 1
Q(n0) = 0.2

Run a simulation from the unexplored node

(3) SIMULATION
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r = 0.1

N(n0) = 2
Q(n0) = 0.3

N(n1) = 1
Q(n1) = 0.2

a1 a2

terminal state sg

with reward 0.1
sg

r = 0.1

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

Backpropagate the reward value up the path

(4) BACKPROPAGATION
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N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

State after the Second Round

Now proceed with 3rd round …
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N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

Calculate the UCB1 values to decide which node to select

UCB1(n1) = 
0.2

1
+ 2

2ln(2)

1
≈ 1.87 UCB1(n2) = 

0.1

1
+ 2

2ln(2)

1
≈ 1.77

(1) SELECTION

UCB1(n) = 
𝑄(𝑛)

𝑁(𝑛)
+ 𝑐 ∙

2 ln 𝑁

𝑁 𝑛
=

𝑄 𝑛

𝑁 𝑛
+ 2 ∙

2 ln 𝑁

𝑁 𝑛
=

𝑄(𝑛)

𝑁(𝑛)
+ 2

ln 𝑁

𝑁 𝑛

Where we have chosen 𝑐 = 2
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UCB1(n1) = 
0.2

1
+ 2

ln(2)

1
≈ 1.87 UCB1(n2) = 

0.1

1
+ 2

ln(2)

1
≈ 1.77

N(n1) = 1
Q(n1) = 0.2

a1 a2

n0/s0

n1/s1 n2/s2
N(n2) = 1

Q(n2) = 0.1

N(n0) = 2
Q(n0) = 0.3

Select the child with highest UCB1 value

(1) SELECTION
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a3 a4

N(n3) = 0
Q(n3) = 0

N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

n0/s0

n1/s1 n2/s2

n3/s3 s4

N(n0) = 2
Q(n0) = 0.3

Expand the selected node

(2) EXPANSION
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N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 0
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 2
Q(n0) = 0.3

a4

s4

(2) EXPANSION
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N(n1) = 1
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 0
Q(n3) = 0

terminal state sg

with reward 0
sg

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 2
Q(n0) = 0.3

Run a simulation from the unexplored node

a4

s4

(3) SIMULATION
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terminal state sg

with reward 0

r = 0

n0/s0
N(n0) = 3

Q(n0) = 0.3

N(n1) = 2
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 1
Q(n3) = 0

r = 0

r = 0
n1/s1 n2/s2

n3/s3

sg

Backpropagate the reward up the path

a4

s4

(4) BACKPROPAGATION
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N(n1) = 2
Q(n1) = 0.2

N(n2) = 1
Q(n2) = 0.1

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

State after the Third Round
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UCB1(n1) = 
0.2

2
+ 2

ln(3)

2
≈ 1.58

UCB1(n2) = 
0.1

1
+ 2

ln(3)

1
≈ 2.20

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Calculate the UCB1 values

a4

s4

(1) SELECTION
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UCB1(n2) = 
0.1

1
+ 2

ln(3)

1
≈ 2.20

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Select the child with highest UCB1 value

a4

s4

(1) SELECTION

UCB1(n1) = 
0.2

2
+ 2

ln(3)

2
≈ 1.58
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a5

N(n5) = 0
Q(n5) = 0

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

Expand selected node

a4

s4

(2) EXPANSION
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N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 0
Q(n5) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

a4

s4

(2) EXPANSION
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N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 0
Q(n5) = 0

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n0) = 3
Q(n0) = 0.3

N(n2) = 1
Q(n2) = 0.1

terminal state sg

with reward 0.1
sg

a4

s4

(3) SIMULATION
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N(v0) = 4
Q(v0) = 0.4

N(n1) = 2
Q(n1) = 0.2

N(n2) = 2
Q(n2) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

N(n5) = 1
Q(n5) = 0.1

r = 0.1

r = 0.1

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

terminal state sg

with reward 0.1
sg

r = 0.1

a4

s4

(4) BACKPROPAGATION
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N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

State after Fourth Round
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N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

UCB1(n1) = 
0.2

2
+ 2

ln(4)

2
≈ 1.77 UCB1(n2) = 

0.2

2
+ 2

ln(4)

2
≈ 1.77

Calculate UCB1 values

a4

s4

(1) SELECTION



©  JK 
60 Artificial Intelligence: Local and Stochastic Search

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

UCB1(n1) = 
0.2

2
+ 2

ln(4)

2
≈ 1.77 UCB1(n2) = 

0.2

2
+ 2

ln(4)

2
≈ 1.77

Break ties on identical UCB1 values (strategy: leftmost node first)

a4

s4

(1) SELECTION
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N(n1) = 2
Q(n1) = 0.2

a1 a2

a3

N(n3) = 1
Q(n3) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

Expand selected node towards unexplored child n4

a4

N(n4) = 0
Q(n4) = 0

n4/s4

(2) EXPANSION
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terminal state sg

with reward 0.3
sg

N(n1) = 2
Q(n1) = 0.2

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 0
Q(n4) = 0

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 4
Q(v0) = 0.4

(3) SIMULATION
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N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

r = 0.3

r = 0.3

terminal state sg

with reward 0.3

r = 0.3

sg

(4) BACKPROPAGATION
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N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

State after Fifth Round
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N(n1) = 3
Q(n1) = 0.5

a1 a2

a3 a4

N(n3) = 1
Q(n3) = 0

N(n4) = 1
Q(n4) = 0.3

a5

n0/s0

n1/s1 n2/s2

n3/s3 n4/s4 n5/s5

N(n2) = 2
Q(n2) = 0.2

N(n5) = 1
Q(n5) = 0.1

N(v0) = 5
Q(v0) = 0.7

RETURN a1

Depends on strategy, here: action leading to child node with
most visits returned (most visited often means „best“)

Computational Budget Reached
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(4) Genetic Algorithms

▪ So far, all search strategies are based on expanding a 

single current state

▪ Why not take 2 parent states and combine it into a new 

successor state?

66

current state

successor states

applicable actions
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Basic Ideas in Genetic Algorithms

▪ Evolution seems to be good to produce good solutions

▪ Similar to evolution, search for solutions by sexual 

reproduction

– combine 2 genoms by crossing, mutating, and selecting

▪ Ingredients

– Encode a state as a string (gene)

– Fitness function to evaluate states

– Population of states (genes)

▪ https://www.youtube.com/watch?v=Y-XMh-iw07w
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Selection, Mutation, and Crossing

▪ Many variation points, e.g. 

– how to select

– what type of cross-over (e.g. 

where to break)

– probability and type of 

mutations
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8 Queens solved with Genetic Algorithms

▪ Chain of numbers giving the position of the queens in the 

columns

▪ Fitness = number of non-attacking pairs of queens

– the higher the value, the better the configuration

– a solution has value 28
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Crossover
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Are Genetic Algorithms good for Optimization?

▪ NO! - otherwise, we would all be equal

▪ GAs are suitable to generate a variety of good solutions, but 

not in finding the optimal solution

– evolution ensures the survival of the fittest under 

changing conditions

71

evolution of sexual species does not result in maximization of fitness, but in 

improvement of another important measure which we call mixability: The ability 

of a genetic variant to function adequately in the presence of a wide variety of 

genetic partners…
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Genetic Algorithm: Learning to Jump over a Ball

72

https://www.youtube.com/watch?v=Gl3EjiVlz_4
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https://www.youtube.com/watch?v=Gl3EjiVlz_4
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(5) Ant Colony Optimization

▪ So far, always a single agent searches for a solution …

▪ Why not use several agents and combine their results?

▪ Form of swarm intelligence

– ants deposit pheromone on the ground in order to mark 

some favorable path that should be followed by other 

members of the colony

▪ In ACO, a number of artificial ants build solutions to an 

optimization problem and exchange information on their 

quality via a communication scheme that is reminiscent of 

the one adopted by real ants
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ACO for Traveling Salesperson Problems

At each stage, the ant chooses to move from one city to 

another according to some rules:

▪ It must visit each city exactly once

▪ A distant city has less chance of being chosen (the visibility)

▪ The more intense the pheromone trail laid out on an edge between two cities, 

the greater the probability that that edge will be chosen

▪ Having completed its journey, the ant deposits more pheromones on all edges it 

traversed, if the journey is short

▪ After each iteration, trails of pheromones evaporate

74

➢ Adapts automatically 

to changing network 

layouts
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An ACO Algorithm

75

Dorigo, Marco, and Gianni Di Caro. "Ant colony optimization: a new meta-heuristic." Evolutionary 

Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Vol. 2. IEEE, 1999.
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Summary

▪ In very large search spaces heuristic search fails, we thus move to local 

and stochastic search methods and focus on anytime algorithms

▪ Stochastic and local search can converge to the optimal solution under 

very large resources (time, memory)

▪ UCT is the most popular stochastic search algorithm and has very 

successful applications in game playing

▪ Hillclimbing is a simple local search algorithm, which is very powerful 

when combined with random walks/moves and restarts

▪ A key to success for stochastic search is to find a good balance between 

exploration and exploitation

▪ Meta-heuristic methods (such as genetic algorithms) do not guarantee 

optimality

– as a result are not suitable for optimization

– still very popular in practice - they are good for finding a variety of 

well-fitting solutions
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Working Questions

1. How do local and systematic search methods differ?

2. What can we say about the theoretical properties of local search

methods?

3. What techniques exist to escape from local optima and

plateaus?

4. Why does local search often work well in practice?

5. How does hillclimbing work?

6. Can you explain the main phases and computations of N and Q 

values of UCT?
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