
Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Artificial Intelligence
13. Planning, Part II: Algorithms

How to Solve Arbitrary Search Problems

Jörg Hoffmann

Online (Summer) Term 2020

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 1/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Agenda

1 Introduction

2 How to Relax

3 The Delete Relaxation

4 The h+ Heuristic

5 Approximating h+

6 An Overview of Advanced Results (for Reference Only!)

7 Conclusion

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 2/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reminder: Our Agenda for This Topic

→ Our treatment of the topic “Planning” consists of Chapters 12 and 13.

Chapter 12: Background, planning languages, complexity.

→ Sets up the framework. Computational complexity is essential to
distinguish different algorithmic problems, and for the design of
heuristic functions (see next).

This Chapter: How to automatically generate a heuristic function,
given planning language input?

→ Focussing on heuristic search as the solution method, this is the
main question that needs to be answered.

→ We focus on model-based techniques. The use of neural networks is
an active research topic (in my research group among others). It’s
difficult due to the extremely general nature of planning languages.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 4/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reminder: Search

→ Starting at initial state, produce all successor states step by step:

03/23

General Search

From the initial state, produce all successive states step
by step search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

→ In planning, this is referred to as forward search, or forward
state-space search.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 5/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Search in the State Space?

→ Use heuristic function to guide the search towards the goal!

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 6/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reminder: Heuristic Search

goal
init

cost estim
ate h

cost estimate h

cost estimate h

cost estimate h

→ Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small h(s).

Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 7/78

http://qiao.github.io/PathFinding.js/visual/

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reminder: Heuristic Functions

Definition (Heuristic Function). Let Π be a planning task with states S. A
heuristic function, short heuristic, for Π is a function h : S 7→ N+

0 ∪ {∞} so that
h(s) = 0 whenever s is a goal state.

→ Exactly like our definition from Chapter 2. Except, because we assume unit
costs here, we use N+

0 instead of R+
0 .

Definition (h∗, Admissibility). Let Π be a planning task with states S. The
perfect heuristic h∗ assigns every s ∈ S the length of a shortest path from s to
a goal state, or ∞ if no such path exists. A heuristic function h for Π is
admissible if, for all s ∈ S, we have h(s) ≤ h∗(s).

→ Exactly like our definition from Chapter 2, except for path length instead of
path cost (cf. above).

→ In all cases, we attempt to approximate h∗(s), the length of an optimal plan
for s. Some algorithms guarantee to lower-bound h∗(s).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 8/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reminder: Greedy Best-First Search and A∗

Duplicate elimination omitted for simplicity:

function Greedy Best-First Search [A∗](problem) returns a solution, or failure
node ← a node n with n.state=problem.InitialState
frontier ← a priority queue ordered by ascending h [g + h], only element n
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
Insert(n′, h(n′) [g(n′) + h(n′)], frontier)

→ Is Greedy Best-First Search optimal? No =⇒ satisficing planning.

→ Is A∗ optimal? Yes, but only if h is admissible =⇒
optimal planning, with such h.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 9/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Our Agenda for This Chapter

How to Relax: How to relax a problem?

→ Basic principle for generating heuristic functions.

The Delete Relaxation: How to relax a planning problem?

→ The delete relaxation is the most successful method for the automatic
generation of heuristic functions. It is a key ingredient of many IPC
winners during the last two decades. It relaxes STRIPS planning tasks by
ignoring the delete lists.

The h+ Heuristic: What is the resulting heuristic function?

→ h+ is the “ideal” delete relaxation heuristic.

Approximating h+: How to actually compute a heuristic?

→ Turns out that, in practice, we must approximate h+.

An Overview of Advanced Results: Is that all?

→ No! This section gives a brief glimpse into the research area of heuristic
search planning.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 10/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Heuristic Functions from Relaxed Problems

Problem Π: Find a route from Saarbruecken To Edinburgh.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 12/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Heuristic Functions from Relaxed Problems

Relaxed Problem Π′: Throw away the map.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 12/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Heuristic Functions from Relaxed Problems

Heuristic function h: Straight line distance.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 12/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax

P
h∗P

N+
0 ∪ {∞}

P ′
h∗P ′

R

You have a class P of problems, whose perfect heuristic h∗P you wish
to estimate.

You define a class P ′ of simpler problems, whose perfect heuristic
h∗P ′ can be used to estimate h∗P .

You define a transformation – the relaxation mapping R – that
maps instances Π ∈ P into instances Π′ ∈ P ′.
Given Π ∈ P, you let Π′ := R(Π), and estimate h∗P(Π) by h∗P ′(Π

′).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 13/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Relaxation in Route-Finding

Problem class P: Route finding.

Perfect heuristic h∗P for P: Length of a shortest route.

Simpler problem class P ′: Route finding on an empty map.

Perfect heuristic h∗P′ for P ′: Straight-line distance.

Transformation R: Throw away the map.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 14/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax in Planning? (A Reminder!)

Example: “Logistics”

Facts P : {truck(x) | x ∈ {A,B,C,D}}∪
{pack(x) | x ∈ {A,B,C,D, T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)

drive(x, y), where x, y have a road:
“truck(x)⇒ truck(y),¬truck(x)”.
load(x): “truck(x), pack(x)⇒ pack(T),¬pack(x)”.
unload(x): “truck(x), pack(T)⇒ pack(x),¬pack(T)”.

Example “Only-Adds” Relaxation: Drop the preconditions and deletes.

“drive(x, y): ⇒ truck(y)”; “load(x): ⇒ pack(T)”; “unload(x): ⇒ pack(x)”.

→ Heuristic value for I is? 1: A plan for the relaxed task is 〈unload(D)〉.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 15/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Overview

Attention! Search uses the real (un-relaxed) Π. The relaxation is applied (e.g.,
in Only-Adds, the simplified actions are used) only within the call to h(s)!!!

R(Πs)
R h∗P ′

h(s) = h∗P ′(R(Πs))state s

Problem Π Solution to ΠHeuristic Search on Π

Here, Πs is Π with initial state replaced by s, i.e., Π = (P,A, I,G)
changed to (P,A, s,G): The task of finding a plan for search state s.

A common student mistake is to instead apply the relaxation once to the
whole problem, then doing the whole search “within the relaxation”.

The next slide illustrates the correct search process in detail.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 16/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BCBC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: AC; goal G: AD.
Actions A: add .
hR(s) =1: 〈ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BCBC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .

AC
drAB−−−−→ BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: BC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: CC; goal G: AD.
Actions A: pre, add , del .

BC
drBC−−−−→ CC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: CC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: AC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: DC; goal G: AD.
Actions A: pre, add , del .

CC
drCD−−−−→ DC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: DC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: CT ; goal G: AD.
Actions A: pre, add , del .

CC
loC−−→ CT .

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: CT ; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Only-Adds

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 17/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Only-Adds is a “Native” Relaxation

Native Relaxations: Confusing special case where P ′ ⊆ P.

P

P ′ ⊆ PR

N+
0 ∪ {∞}

h∗P

h∗P

Problem class P: STRIPS planning tasks.

Perfect heuristic h∗P for P: Length h∗ of a shortest plan.

Transformation R: Drop the preconditions and delete lists.

Simpler problem class P ′ is a special case of P, P ′ ⊆ P : STRIPS planning
tasks with empty preconditions and delete lists.

Perfect heuristic for P ′: Shortest plan for only-adds STRIPS task.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 18/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

Does Only-Adds yield a “good heuristic” (accurate goal distance
estimates) in . . .

(A): Freecell?

(C): Blocksworld?

(B): SAT? (#unsatisfied clauses)

(D): Path Planning?

→ (A): No: The heuristic value does take into account how many cards are already
“home”, but it is completely independent of the placement of all the other cards. In
particular, dead-end avoidance is essential in Freecell, but the heuristic is unable to
detect any dead ends.

→ (B): No: Typically, it is easy to satisfy many clauses, but then satisfying the
remaining ones involves re-doing the entire assignment. (Nevertheless, this heuristic is
being used in local search for SAT!)

→ (C): No: e.g., if a single block A still needs to move elsewhere, but there are 100
blocks on top of A, then the heuristic value is 1.

→ (D): No! The heuristic remains constantly 1 until we reach the actual goal state.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 19/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How the Delete Relaxation Changes the World

Relaxation mapping R saying that:

“When the world changes, its previous state remains true as well.”

Relaxed world: (before)

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 21/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How the Delete Relaxation Changes the World

Relaxation mapping R saying that:

“When the world changes, its previous state remains true as well.”

Relaxed world: (after)

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 21/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

The Delete Relaxation

Definition (Delete Relaxation). Let Π = (P,A, I,G) be a planning
task. The delete-relaxation of Π is the task Π+ = (P,A+, I, G) where
A+ = {a+ | a ∈ A} with prea+ = prea, adda+ = adda, and dela+ = ∅.
→ In other words, the class of simpler problems P ′ is the set of all
STRIPS planning tasks with empty delete lists, and the relaxation
mapping R drops the delete lists.

Definition (Relaxed Plan). Let Π = (P,A, I,G) be a planning task,
and let s be a state. A relaxed plan for s is a plan for (P,A, s,G)+. A
relaxed plan for I is called a relaxed plan for Π.

→ A relaxed plan for s is an action sequence that solves s when
pretending that all delete lists are empty.

→ Also called delete-relaxed plan; “relaxation” is often used to mean
“delete-relaxation” by default.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 22/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

A Relaxed Plan for “TSP” in Australia

1 Initial state: {at(Sydney), visited(Sydney)}.
2 Apply drive(Sydney ,Brisbane)+: {at(Brisbane), visited(Brisbane),

at(Sydney), visited(Sydney)}.
3 Apply drive(Sydney ,Adelaide)+: {at(Adelaide), visited(Adelaide),

at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)}.
4 Apply drive(Adelaide,Perth)+: {at(Perth), visited(Perth),

at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane),
at(Sydney), visited(Sydney)}.

5 Apply drive(Adelaide,Darwin)+: {at(Darwin), visited(Darwin),
at(Perth), visited(Perth), at(Adelaide), visited(Adelaide),
at(Brisbane), visited(Brisbane), at(Sydney), visited(Sydney)}.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 23/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

A Relaxed Plan for “Logistics”

Facts P : {truck(x) | x ∈ {A,B,C,D}}∪ pack(x) | x ∈ {A,B,C,D, T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Relaxed actions A+: (Notated as “precondition ⇒ adds”)

drive(x, y)+: “truck(x)⇒ truck(y)”.
load(x)+: “truck(x), pack(x)⇒ pack(T)”.
unload(x)+: “truck(x), pack(T)⇒ pack(x)”.

Relaxed plan:

〈drive(A,B)+, drive(B,C)+, load(C)+, drive(C,D)+, unload(D)+〉

→ We don’t need to drive the truck back, because “it is still at A”.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 24/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

How does ignoring delete lists simplify Sokoban?

(A): You will never “lock
yourself in”.

(C): You can walk through walls.

(B): Free positions remain free.

(D): A single action can push 2
stones at once.

→ (A): Yes, because of (B).

→ (B): Yes, when we move a stone into a free space, that space is still free
afterwards.

→ (C): No, we dont get any new moves in the relaxation.

→ (D): Only if we give names to the stones. Within the relaxed problem, it may
happen that two stones are in the same position, so in principle we can push
them both. However, without distinguishing stone names, it is impossible to
separate them again, so the two stones in fact become (behave in all relevant
ways exactly like) a single stone.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 25/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

PlanEx+

Definition (Relaxed Plan Existence Problem). By PlanEx+, we
denote the problem of deciding, given a planning task Π = (P,A, I,G),
whether or not there exists a relaxed plan for Π.

→ This is easier than PlanEx for general STRIPS!

Proposition (PlanEx+ is Easy). PlanEx+ is a member of P.

Proof. The following algorithm decides PlanEx+:

F := I
while G 6⊆ F do

F ′ := F ∪
⋃
a∈A:prea⊆F

adda
(*) if F ′ = F then return “unsolvable” endif
F := F ′

endwhile
return “solvable”

The algorithm terminates after at most |P | iterations, and thus runs in
polynomial time. Correctness: See slide 30.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 26/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Deciding PlanEx+ in “TSP” in Australia

Iterations on F :

{at(Sydney), visited(Sydney)}

∪ {at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)}

∪ {at(Darwin), visited(Darwin), at(Perth), visited(Perth)}

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 27/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Deciding PlanEx+ in “Logistics”

Iterations on F :

{truck(A), pack(C)}

∪ {truck(B)}

∪ {truck(C)}

∪ {truck(D), pack(T)}

∪ {pack(A), pack(B), pack(D)}

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 28/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Deciding PlanEx+ in Unsolvable “Logistics”

Iterations on F :

{truck(A), pack(C)}

∪ {truck(B)}

∪ {truck(C)}

∪ {pack(T)}

∪ {pack(A), pack(B)}

∪ ∅

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 29/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

PlanEx+ Algorithm: Proof

→ Show: The algorithm returns “solvable” iff there exists a relaxed plan for Π.

Denote by Fi the content of F after the ith iteration of the while-loop, and
denote by Ai the set of actions a where prea ⊆ Fi.
All a ∈ A0 are applicable in I, all a ∈ A1 are applicable in appl(I, A+

0), and so
forth. Thus Fi = appl(I, 〈A+

0 , . . . , A
+
i−1〉). (Within each A+

j , we can sequence
the actions in any order.)

Direction “⇒”: If “solvable” is returned after iteration n then G ⊆ Fn =
appl(I, 〈A+

0 , . . . , A
+
n−1〉) so 〈A+

0 , . . . , A
+
n−1〉 can be sequenced to a relaxed plan

which shows the claim.

Direction “⇐”: Let 〈a+
0 , . . . , a

+
n−1〉 be a relaxed plan, hence

G ⊆ appl(I, 〈a+
0 , . . . , a

+
n−1〉). Assume, for the moment, that we drop line (*)

from the algorithm. It is then easy to see that ai ∈ Ai and
appl(I, 〈a+

0 , . . . , a
+
i−1〉) ⊆ Fi, for all i. We get G ⊆ appl(I, 〈a+

0 , . . . , a
+
n−1〉)

⊆ Fn, and the algorithm returns “solvable” as desired.

Assume to the contrary of the claim that, in an iteration i < n, (*) fires. Then
G 6⊆ Fi and Fi = Fi+1. But, then, Fi = Fj for all j > i, and we get G 6⊆ Fn in
contradiction.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 30/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Hold on a Sec – Where are we?

P

P ′ ⊆ PR

N+
0 ∪ {∞}

h∗P

h∗P

P: STRIPS planning tasks; h∗P : Length h∗ of a shortest plan.

P ′ ⊆ P: STRIPS planning tasks with empty delete lists.

R: Drop the delete lists.

Heuristic function: Length of a shortest relaxed plan (h∗ ◦ R).

→ PlanEx+ is not actually what we’re looking for. PlanEx+ = relaxed
plan existence; we want relaxed plan length h∗ ◦ R.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 32/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+: The Ideal Delete Relaxation Heuristic

Definition (Optimal Relaxed Plan). Let Π = (P,A, I,G) be a
planning task, and let s be a state. An optimal relaxed plan for s is an
optimal plan for (P,A, s,G)+.

→ Same as slide 22, just adding the word “optimal”.

Here’s what we’re looking for:

Definition (h+). Let Π = (P,A, I,G) be a planning task with states S.
The ideal delete-relaxation heuristic h+ for Π is the function
h+ : S 7→ N0 ∪ {∞} where h+(s) is the length of an optimal relaxed plan
for s if a relaxed plan for s exists, and h+(s) =∞ otherwise.

→ In other words, h+ = h∗ ◦ R, cf. previous slide.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 33/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+ is Admissible

Lemma. Let Π = (P,A, I,G) be a planning task, and let s be a state. If
〈a1, . . . , an〉 is a plan for (P,A, s,G), then 〈a+1 , . . . , a+n 〉 is a plan for
(P,A, s,G)+.

Proof Sketch. Show by induction over 0 ≤ i ≤ n that
appl(s, 〈a1, . . . , ai〉) ⊆ appl(s, 〈a+1 , . . . , a

+
i 〉).

→ ”If we ignore deletes, the states along the plan can only get bigger.”

Theorem. h+ is Admissible.

Proof. Let Π = (P,A, I,G) be a planning task with states S, and let
s ∈ S. h+(s) is defined as optimal plan length in (P,A, s,G)+. With the
above lemma, any plan for (P,A, s,G) also constitutes a plan for
(P,A, s,G)+. Thus optimal plan length in (P,A, s,G)+ cannot be
longer than that in (P,A, s,G), and the claim follows.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 34/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+ in “TSP” in Australia

Planning vs. Relaxed Planning:

Optimal plan: 〈drive(Sydney ,Brisbane), drive(Brisbane,Sydney),
drive(Sydney ,Adelaide), drive(Adelaide,Perth), drive(Perth,Adelaide),
drive(Adelaide,Darwin), drive(Darwin,Adelaide), drive(Adelaide,Sydney)〉.
Optimal relaxed plan: 〈drive(Sydney ,Brisbane), drive(Sydney ,Adelaide),
drive(Adelaide,Perth), drive(Adelaide,Darwin)〉.
h∗(I) = 8; h+(I) = 4.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 35/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BCBC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: AC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drAB, drBC, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BCBC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .

AC
drAB−−−−→ BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: BC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drBA, drBC, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: CC; goal G: AD.
Actions A: pre, add , del .

BC
drBC−−−−→ CC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: CC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drCB, drBA, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: AC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

AC

AC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: DC; goal G: AD.
Actions A: pre, add , del .

CC
drCD−−−−→ DC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: DC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drDC, drCB, drBA, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: CT ; goal G: AD.
Actions A: pre, add , del .

CC
loC−−→ CT .

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: CT ; goal G: AD.
Actions A: pre, add .
h+(s) =4: e.g.
〈drCB, drBA, drCD, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 36/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

On the “Accuracy” of h+

Reminder: Heuristics based on ignoring deletes are the key ingredient to
almost all IPC winners of the last decade.

→ Why?

→ A heuristic function is useful if its estimates are “accurate”.

How to measure this?

Known method 1: Error relative to h∗, i.e., bounds on
|h∗(s)− h(s)|.
Known method 2: Properties of the search space surface: Local
minima etc.

→ For h+, method 2 is the road to success:

→ In many benchmarks, under h+, local minima provably do not exist!
[Hoffmann (2005)]

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 37/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

A Brief Glimpse of h+ Search Space Surfaces

→ Graphs = state spaces, vertical height = h+:

“Gripper” “Logistics”

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 38/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+ in (the Real) TSP

→ h+ = Minimum Spanning Tree

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 39/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+ in Graphs

h+(Graph-Distance) = real distance

(shortest paths never “walk back”)

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 40/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

In this domain, h+ is equal to?

(A): Manhattan Distance.

(C): Vertical distance.

(B): Horizontal distance.

(D): h∗.

→ (A): No, relaxed plans can’t walk through walls. (B), (C): No, relaxed plans must
move both horizontally and vertically. (D): Yes, optimal plan = shortest path =
optimal relaxed plan (cf. previous slide).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 41/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

h+ in the Blocksworld

CD

B

C

B

A
A

Initial State Goal State

Optimal plan: 〈putdown(A), unstack(B,D), stack(B,C),
pickup(A), stack(A,B)〉.

Optimal relaxed plan: 〈stack(A,B), unstack(B,D), stack(B,C)〉.

Observe: What can we say about the “search space surface” at the
initial state here? The initial state lies on a local minimum under h+,
together with the successor state s where we stacked A onto B. All
direct other neighbors of these two states have a strictly higher h+ value.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 42/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How to Compute h+?

Definition (PlanLen+). By PlanLen+, we denote the problem of deciding,
given a planning task Π and an integer B, whether there exists a relaxed plan
for Π of length at most B.

→ By computing h+, we solve PlanLen+.

Theorem. PlanLen+ is NP-complete.

Proof. Membership: Easy. Hardness: 1. Trivial from our prior results, because this
generalizes optimal planning under the Only-Adds relaxation, cf. Chapter 12. 2.
However, hardness of optimal Only-Adds comes from hardness of Minimum Cover,
which is easy for sets (add lists) of size ≤ 2. One can prove by reduction from SAT
that PlanLen+ remains hard even with small add lists. Construction outline, example
{C1 = {A}, C2 = {¬A}}:

Action “SetXi true” for every variable Xi: pre empty, add {Atrue,Aset}.
Action “SetXifalse” for every variable Xi: pre empty, add {Afalse,Aset}.
Action “SatisfyCj ” for every clause Cj : pre Atrue, add C1 sat ; pre Afalse, add
C2 sat .

Goal “Xiset” for all variables Xi, “Cj sat” for all clauses Cj : Aset ,C1 sat ,C2 sat .

Length bound B := number of variables + number of clauses (= 3 here).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 44/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Hold on a Sec – Where are we?

P

P ′ ⊆ PR

N+
0 ∪ {∞}

h∗P

h∗P

P: STRIPS planning tasks; h∗P : Length h∗ of a shortest plan.

P ′ ⊆ P: STRIPS planning tasks with empty delete lists.

R: Drop the delete lists.

Heuristic function: h+ = h∗ ◦ R, which is hard to compute.

→ We can’t compute our heuristic h+ efficiently. So we approximate it
instead.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 45/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Approximating h+: hFF

Definition (hFF). Let Π = (P,A, I,G) be a planning task with states S.
A relaxed plan heuristic hFF for Π is a function hFF : S 7→ N0 ∪ {∞}
returning the length of some, not necessarily optimal, relaxed plan for s if
a relaxed plan for s exists, and returning hFF(s) =∞ otherwise.

Notes:

hFF ≥ h+, i.e., hFF never under-estimates h+.
We may have hFF > h∗, i.e., hFF is not admissible! Thus hFF can be
used for satisficing planning only, not for optimal planning.

Observe: hFF as per this definition is not unique. How do we find
“some, not necessarily optimal, relaxed plan for (P,A, s,G)”?

→ In what follows, we consider the following algorithm computing
relaxed plans, and therewith (one variant of) hFF:

1 Chain forward to build a relaxed planning graph (RPG).
2 Chain backward to extract a relaxed plan from the RPG.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 46/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF: Relaxed Planning Graphs (RPG)

F0 := s, t := 0
while G 6⊆ Ft do

At := {a ∈ A | prea ⊆ Ft}
Ft+1 := Ft ∪

⋃
a∈At adda

if Ft+1 = Ft then stop endif
t := t+ 1

endwhile

→ Does this look familiar to you? Could. It’s the same algorithm we used to
decide PlanEx+ (slide 26).

“Logistics” example: Blackboard (similar to slide 28).

Are we done? cf. slide 30: “〈A+
0 , . . . , A

+
n−1〉 can be sequenced to a relaxed

plan”. Could use this as the basis of hFF.

→ But this would overestimate vastly!

In “Logistics”,
∑n−1
i=0 |Ai| = 11 > 8 = h∗. And now imagine there are 100

packages only one of which needs to be transported . . .

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 47/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF: Extracting a Relaxed Plan

Information from the RPG: (min over an empty set is ∞)

For p ∈ P : level(p) := min{t | p ∈ Ft}.
For a ∈ A: level(a) := min{t | a ∈ At}.

M := max{level(p) | p ∈ G}
If M =∞ then hFF(s) :=∞; stop endif
for t := 0, . . . ,M do

Gt := {g ∈ G | level(g) = t}
endfor
for t := M, . . . , 1 do

for all g ∈ Gt do
select a, level(a) = t− 1, g ∈ adda

for all p ∈ prea do Glevel(p) := Glevel(p) ∪ {p} endfor
endfor

endfor
hFF(s) := number of selected actions

“Logistics” example: Blackboard.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 48/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF in “TSP” in Australia

RPG:

F0 = {at(Sydney), visited(Sydney)}.
A0 = {drive(Sydney ,Adelaide), drive(Sydney ,Brisbane)}.
F1 = F0∪ {at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)}.
A1 = A0∪ {drive(Adelaide,Darwin), drive(Adelaide,Perth),
drive(Adelaide,Sydney), drive(Brisbane,Sydney)}.
F2 = F1∪ {at(Darwin), visited(Darwin), at(Perth), visited(Perth)}.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 49/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF in “TSP” in Australia

Inserting the goals:

F0: at(Sydney), visited(Sydney).

A0: drive(Sydney ,Adelaide), drive(Sydney ,Brisbane).

F1: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

A1: drive(Adelaide,Darwin), drive(Adelaide,Perth),
drive(Adelaide,Sydney), drive(Brisbane,Sydney).

F2: at(Darwin), visited(Darwin), at(Perth), visited(Perth).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 49/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF in “TSP” in Australia

Supporting the goals at t = 2:

F0: at(Sydney), visited(Sydney).

A0: drive(Sydney ,Adelaide), drive(Sydney ,Brisbane).

F1: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

A1: drive(Adelaide,Darwin), drive(Adelaide,Perth),
drive(Adelaide,Sydney), drive(Brisbane,Sydney).

F2: at(Darwin), visited(Darwin), at(Perth), visited(Perth).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 49/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Computing hFF in “TSP” in Australia

Supporting the goals at t = 1:

F0: at(Sydney), visited(Sydney).

A0: drive(Sydney ,Adelaide), drive(Sydney ,Brisbane).

F1: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

A1: drive(Adelaide,Darwin), drive(Adelaide,Perth),
drive(Adelaide,Sydney), drive(Brisbane,Sydney).

F2: at(Darwin), visited(Darwin), at(Perth), visited(Perth).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 49/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

How Does it All Fit Together?

P

P ′ ⊆ PR

N+
0 ∪ {∞}

h∗P

h∗P

P: STRIPS planning tasks. h∗P : Length h∗ of a shortest plan. P ′:
STRIPS planning tasks with empty delete lists. R: Drop the delete lists.
h∗ ◦ R: Length h+ of a shortest relaxed plan.

→ Use hFF to approximate h+ which itself is hard to compute.

→ h+ is admissible; hFF is not.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 50/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Helpful Actions Pruning

Idea: In search, expand only those actions contained in the relaxed plan.

→ Relaxed plan = “Go To Supermarket, Buy Milk, . . . ”

→ Absolutely essential, used in all state-of-the-art satisficing planners.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 51/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Helpful Actions Pruning

Idea: In search, expand only those actions contained in the relaxed plan.

(Schedule domain:
many tools,

many objects.)

→ Relaxed plan does not drill holes into objects that need to be painted.

→ Absolutely essential, used in all state-of-the-art satisficing planners.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 51/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

For Reference: Other Approximations of h+

hmax: Approximate the cost of fact set g by the most costly single fact p ∈ g

hmax(s, g) :=

 0 g ⊆ s
mina∈A,p∈adda1 + hmax(s, prea) g = {p}
maxp∈g h

max(s, {p}) |g| > 1

→ Admissible, but very uninformative (under-estimates vastly).

hadd: Use instead the sum of the costs of the single facts p ∈ g

hadd(s, g) :=

0 g ⊆ s
mina∈A,p∈adda1 + hadd(s, prea) g = {p}∑
p∈g h

add(s, {p}) |g| > 1

→ Not admissible, and prone to over-estimation; hFF works better.

Good lower bounds on h+: (cf. next section)

Admissible landmarks [Karpas and Domshlak (2009)]

LM-cut [Helmert and Domshlak (2009)].

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 52/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

In the initial state of the Towers of Hanoi task with 5 discs, what
is the value of h+?
(A): 1

(C): 5

(B): 2

(D): 32

→ (C): The discs always “remain stacked”, so we can just clear the bottom disc and
move it over. For n discs, this takes h+(I) = n steps.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 53/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Before We Begin

Challenge: Given a planning task Π, simplify Π to obtain a relaxed planning
task Π′, then solve Π′ to obtain the heuristic estimate h. All of this must be
fully automatic.

Method 1: Π′ := delete relaxation, h := hFF.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

Methods 2, 3, 4, . . . : Up next!

→ In what follows, I’m going to give you a snapshot of this research area.

ATTENTION! You’re not going to understand all of this, and it’s not intended
for you to understand all of this.

→ It’s intended as a (hopefully interesting) glimpse into this area, and as an
appetizer for my specialized lecture Automatic Planning this winter. (And, no,
it’s not relevant to the exam.)

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 55/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

4 of the 5 Families We Know Up to Now

Ignoring Deletes

h+

Abstractions

PDB

M&S

Critical Paths

h1

h2

h3

. . .

Landmarks

hLM
L

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 56/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Abstractions: Idea

Abstract state space:

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 57/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Abstractions: Example

2 6

5 7

3 4 1

1 2 3 4

5 6 7

→ h = Solution in abstract state space of projected puzzle

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 57/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Abstractions: Details

What is an abstraction, formally?

→ An abstraction is a function α mapping the state space (all world
states) to a (smaller) set of abstract world states.

How is the corresponding heuristic function hα defined?

→ Given a world state s, hα(s) = h∗θα(α(s)) where h∗θα is goal distance in
the abstract state space θα: The quotient of the state space over the
equivalence relation ∼ where s ∼ t iff α(s) = α(t).

What is a pattern database heuristic?

→ A pattern database heuristic (PDB) is an abstraction heuristic hα where
α is a projection, i.e., α(s) = α(t) iff s and t agree on a subset of the state
variables (e.g., those encoding the positions of 1, . . . , 7 and the blank).

What is a merge-and-shrink heuristic?

→ A merge-and-shrink heuristic (M&S) is an abstraction heuristic hα

constructed by starting with projections on single variables, then iteratively
merging two abstractions (replacing them with their synchronized product)
and shrinking an abstraction (aggregating pairs of abstract states).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 58/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Abstractions: (Some) Recent Results

“Recent”: The last 10 or so years.

“Some”: A sample of results that I personally find interesting.

(a) Automatic generation of pattern database heuristics [Haslum et al.
(2007)]: Find a collection of patterns by hill-climbing in the space of
pattern collections, pruning useless choices based on the causal graph.

(b) Shrinking by bisimulation [Nissim et al. (2011)]: Bisimulation is a
well-known concept from Verification. If we use it in merge-and-shrink
[Helmert et al. (2007, 2014)], to decide which abstracts to aggregate when
shrinking an abstraction, we get the perfect heuristic, hα = h∗; but this is
prohibitively expensive. Conservative label reduction can yield exponential
savings at no information loss.

(c) Shrinking by approximate bisimulation [Katz et al. (2012)]: To trade
accuracy for speed, need coarser notion of state similarity. K-catching
bisimulation is bisimulation relative to an action subset K; choosing K
enables the trade-off (and is loss-free in certain cases).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 59/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Landmarks: Example

Problem: Bring key B to position 1.

Landmarks:

robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7.

Lock-open.

Have-key-A.

Have-key-B.

. . .

→ h = “Number of open items on the to-do list”

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 60/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Landmarks: Details

What is a fact landmark?

→ A fact landmark for a state s is a fact that must be true at some point
along any plan for s.

What is a disjunctive action landmark?

→ A disjunctive action landmark for a state s is a set of actions L at least
one of which must be used by any plan for s.

How can we turn a fact landmark into a disjunctive action landmark?

→ If p is a fact landmark for s, and p is not true in s, then the set L of all
actions whose effect includes p is a disjunctive action landmark for s.

Can all disjunctive action landmarks be derived that way?

→ No! (Simple counting argument; alternative solution paths.)

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 61/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Landmarks: (Some) Recent Results

(a) Inadmissble LM h for satisficing planning in LAMA [Richter and
Westphal (2010)]: Find fact LMs for initial state, incremental
maintenance of open LMs for search states. h =count of open LMs.

(b) Admissible LM h for optimal planning [Karpas and Domshlak
(2009)]: Find fact LMs for initial state, incremental maintenance of open
LMs for search states; consider the induced disjunctive action LMs.
h =admissible combination, using cost partitioning.

(c) LM-cut [Helmert and Domshlak (2009)]: Find disjunctive action LMs
anew for every search state, using iterated cuts in a graph over facts,
where edges (p, q) correspond to actions with p in precondition and q in
effect. The best admissible heuristic we have at this point!

(d) From landmarks via hitting sets to h+ [Bonet and Helmert (2010)]:
Any plan must be a hitting set for all disjunctive action LMs. Thus the
minimum cost hitting set yields an admissible heuristic. Given sufficiently
many LMs, this is equal to h+ . . . !

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 62/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Critical Paths: Example

→ h1 = Most Expensive 1-Sub-Tour

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 63/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Critical Paths: Example

→ h2 = Most Expensive 2-Sub-Tour

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 63/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Critical Paths: Example

→ hm = Most Expensive m-Sub-Tour

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 63/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Critical Paths: Details

How is h1 defined?

h1(s) := h1(s,G) where h1(s, g) = 0 g ⊆ s
mina∈A,regr(g,a) is defined c(a) + h1(s, regr(g, a)) |g| = 1
maxg′∈g h

1(s, {g′}) |g| > 1

→ This is the same as hmax (cf. slide 52).

How is hm defined?

hm(s) := hm(s,G) where hm(s, g) = 0 g ⊆ s
mina∈A,regr(g,a) is defined c(a) + hm(s, regr(g, a)) |g| ≤ m
maxg′⊆g,|g′|≤m h

m(s, g′) |g| > m

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 64/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Critical Paths: (Some) Recent Results

(a) Compiling hm into h1 [Haslum (2009)]: Given planning task Π,
construct a compiled task Πm such that h1(Πm) = hm(Π). Πm represents
all fact conjunctions c of size ≤ m explicitly, i.e., via a new fact πc whose
truth represents truth of c.

(b) Marriage of hm with h+ [Keyder et al. (2014)]: Given planning task
Π, choose a set C of fact conjunctions and construct a compiled task ΠC

representing C explicitly, such that:

(1) h+(ΠC) ≥ hC and h+(ΠC) ≥ h+. (hC : Version of hm taking into
account sub-goals C.)

(2) h+(ΠC) ≤ h∗(Π).

(3) For suitable C, h+(ΠC) = h∗(Π).

→ Interpolates between h+ and h∗. Systematic method for “taking some
deletes into account”.

→ Unfortunately, ‖ΠC‖ grows exponentially in |C|. But: See next.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 65/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Ignoring Deletes: (Some) Recent Results

(a) Efficient marriage of hm with h+ [Fickert et al. (2016)]: Actually one
can characterize h+(ΠC) in terms of the original planning task Π, avoiding
the compilation altogether while preserving (1–3); and computing hFF(ΠC)
in polynomial time.

(b) Automatic h+ search space surface analysis [Hoffmann (2011)]: One
can identify classes of planning tasks whose surface has particular
properties (absence of local minima), based on properties of the “causal
graph” and “domain transition graphs”. This connection can be exploited
for automatic analysis predicting “how difficult” a task is for delete
relaxation heuristics.

(c) Relaxing only some of the state variables [Domshlak et al. (2015)]:
Red variables accumulate their values (= delete-relaxed semantics), black
variables switch between them (= regular semantics). Allows to
systematically “take some deletes into account”, interpolating between h+

and h∗.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 66/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

And, BTW: “Compilability” Between the Families

→ Framework and results by [Helmert and Domshlak (2009)]:

Ignoring Deletes

h+

hmax

Abstractions

PDB �
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLM
L

hmax 6�PDB

hmax �M&S

hmax ≡ hLM
L

hmax = h1

hLM
L 6�PDB

hLM
L �M&S

M&S6� hLM
L

h1 6�PDB

h1 �M&S

hm 6�M&S

PDB6� hm

h1 ≡ hLM
L

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 67/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

What do you think the compilability results are good for?

(A): Nothing.

(C): Configuring solvers.

(B): Theory.

(D): Inventing new solvers.

→ (A): Nope, definitely good for something.

→ (B): Certainly good for that :-)

→ (C): To some extent, yes: If it emerges that heuristic hA is generally
dominated by heuristic hB , then there is good reason to use hB .

→ (D): Big big YES! Remember I mentioned LM-cut as the strongest
admissible heuristic we have at this point? LM-cut was discovered as a
side-product of proving that h1 can be compiled into landmarks heuristics!

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 68/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Summary

Heuristic search on classical search problems relies on a function h
mapping states s to an estimate h(s) of their goal distance. Such
functions h are derived by solving relaxed problems.

In planning, the relaxed problems are generated and solved automatically.
There are four known families of suitable relaxation methods: abstractions,
landmarks, critical paths, and ignoring deletes (aka delete relaxation).

The delete relaxation consists in dropping the deletes from STRIPS
planning tasks. A relaxed plan is a plan for such a relaxed task. h+(s) is
the length of an optimal relaxed plan for state s. h+ is NP-hard to
compute.

hFF approximates h+ by computing some, not necessarily optimal, relaxed
plan. That is done by a forward pass (building a relaxed planning graph),
followed by a backward pass (extracting a relaxed plan).

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 70/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Interested? BSc/MSc/HiWi@FAI

Winter term course Automatic Planning:

Heuristic functions: Partial delete relaxation, abstractions, landmarks,
critical-path heuristics, cost partitionings.

Analyzing heuristic functions: Compilability between heuristic functions,
search space surface analysis.

Optimality-preserving state-space reduction methods: Partial-order
reduction, symmetry reduction, simulation-based dominance pruning.

International Planning Competition: Overview of languages, systems,
results.

Practical experience: You’ll implement your own planning system and
participate in a planning competition at the end of the course.

Active research in my research group FAI:

Star-Topology Decoupling: A new state-space decomposition technique
that can yield vast savings on problems with a client-server nature.
Currently: Model checking, liveness properties, weak memory models.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 71/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Interested? BSc/MSc/HiWi@FAI

Active research in my research group FAI: (continued)

NoGood learning: The first technique able to learn sound and generalizing
knowledge from dead-end states during state space search. Currently:
Probabilistic planning.

Planning and ML: Using neural networks (NN) to learn heuristic functions
and/or action policies. Model checking and visualizing NN action policies.

Explainable AI Planning (XAIP): Analyzing plan-property dependencies to
explain the space of plans. User studies, NASA collaboration, deeper
“Why?” questions, identifying relevant plan properties automatically, . . .

Minecraft instruction generation (collab ColI department): Hierarchical
planning methods combined with natural language generation to plan
instruction texts for constructing complex objects in Minecraft.

Automated security testing (collab CISPA): Modeling attackers on
networks, email infrastructure, etc. to analyze possible attacks; modeling
defenses to assess cost-security trade-offs.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 72/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reading (RN: Same As Previous Chapter)

Chapters 10: Classical Planning and 11: Planning and Acting in the Real
World [Russell and Norvig (2010)].

Content: Ok as a background read, but not a good introduction to modern
planning techniques.

Chapter 10 gives some background. Some issues are, imho,
misrepresented, and it’s far from being an up-to-date account. But it’s Ok
to get some additional intuitions in words different from my own.

Chapter 11 is useful in our context here because I don’t cover any of it. If
you’re interested in extended/alternative planning paradigms, do read it.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 73/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Reading, ctd.

The FF Planning System: Fast Plan Generation Through Heuristic Search
[Hoffmann and Nebel (2001)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/jair01.pdf

Content: The main reference for delete relaxation heuristics.

Semi-Relaxed Plan Heuristics [Keyder et al. (2012)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps12a.pdf

Content: Computes relaxed plan heuristics within a compiled planning task
ΠC

ce , in which a subset C of all fact conjunctions in the task is represented
explicitly. C can in principle always be chosen so that h+

ΠCce
is perfect, so

the technique allows to interpolate between h+ and h∗. In practice, small
sets C sometimes suffice to obtain dramatically more informed relaxed plan
heuristics.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 74/78

http://fai.cs.uni-saarland.de/hoffmann/papers/jair01.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps12a.pdf

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

References I

Blai Bonet and Malte Helmert. Strengthening landmark heuristics via hitting sets. In
Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proceedings of the
19th European Conference on Artificial Intelligence (ECAI’10), pages 329–334,
Lisbon, Portugal, August 2010. IOS Press.

Carmel Domshlak, Jörg Hoffmann, and Michael Katz. Red-black planning: A new
systematic approach to partial delete relaxation. Artificial Intelligence, 221:73–114,
2015.

Maximilian Fickert, Jörg Hoffmann, and Marcel Steinmetz. Combining the delete
relaxation with critical-path heuristics: A direct characterization. Journal of
Artificial Intelligence Research, 56(1):269–327, 2016.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
Domain-independent construction of pattern database heuristics for cost-optimal
planning. In Adele Howe and Robert C. Holte, editors, Proceedings of the 22nd
National Conference of the American Association for Artificial Intelligence
(AAAI’07), pages 1007–1012, Vancouver, BC, Canada, July 2007. AAAI Press.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 75/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

References II

Patrik Haslum. hm(P) = h1(Pm): Alternative characterisations of the generalisation
from hmax to hm. In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis
Refanidis, editors, Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS’09), pages 354–357. AAAI Press, 2009.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux,
editors, Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), pages 176–183, Providence, Rhode Island, USA, 2007.
Morgan Kaufmann.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge & shrink
abstraction: A method for generating lower bounds in factored state spaces.
Journal of the Association for Computing Machinery, 61(3):16:1–16:63, 2014.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 76/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

References III

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann. Where ‘ignoring delete lists’ works: Local search topology in planning
benchmarks. Journal of Artificial Intelligence Research, 24:685–758, 2005.

Jörg Hoffmann. Analyzing search topology without running any search: On the
connection between causal graphs and h+. Journal of Artificial Intelligence
Research, 41:155–229, 2011.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Michael Katz, Jörg Hoffmann, and Malte Helmert. How to relax a bisimulation? In
Blai Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors,
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 101–109. AAAI Press, 2012.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 77/78

Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

References IV

Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Semi-relaxed plan heuristics. In Blai
Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors,
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 128–136. AAAI Press, 2012.

Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Improving delete relaxation
heuristics through explicitly represented conjunctions. Journal of Artificial
Intelligence Research, 50:487–533, 2014.

Raz Nissim, Jörg Hoffmann, and Malte Helmert. Computing perfect heuristics in
polynomial time: On bisimulation and merge-and-shrink abstraction in optimal
planning. In Toby Walsh, editor, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI’11), pages 1983–1990. AAAI
Press/IJCAI, 2011.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Hoffmann Artificial Intelligence Chapter 13: Planning, Part II 78/78

	Introduction
	

	How to Relax
	

	The Delete Relaxation
	

	The h+ Heuristic
	

	Approximating h+
	

	An Overview of Advanced Results (for Reference Only!)
	

	Conclusion
	

	
	References

