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The Problem

→ ”Adversarial search” = Game playing against an opponent.
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Why AI Game Playing?

Many good reasons:

Playing a game well clearly requires a form of “intelligence”.

Games capture a pure form of competition between opponents.

Games are abstract and precisely defined, thus very easy to
formalize.

→ Game playing is one of the oldest sub-areas of AI (ca. 1950).

→ The dream of a machine that plays Chess is, indeed, much older than
AI! (von Kempelen’s “Schachtürke” (1769), Torres y Quevedo’s “El
Ajedrecista” (1912))
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Which Games?

→ No chance element.
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Which Games?

→ Exactly two players.
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Which Games?

→ Game state fully observable.

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 6/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

Which Games?

→ Player utilities are diametrically opposed.
(Else: game theory, equilibria, auctions, . . . )
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These Games!

Restrictions:

The game state is fully observable.

The outcome of each move is deterministic.

Game states discrete, finite number of possible moves and game
states.

There are no infinite runs of the game: a terminal state is always
reached after a finite number of steps.

Two-player zero-sum game: two players, terminal states have utility
with utility(player1) = −utility(player2).

Our formulation (equivalent): single utility function u, players Max
vs. Min trying to maximize vs. minimize u.

Turn-taking: Players move alternatingly. Max begins.
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An Example Game

Game states: Positions of figures.

Moves: Given by rules.

Players: White (Max), Black (Min).

Terminal states: Checkmate.

Utility function: +100 if Black is
checkmated, 0 if stalemate, −100 if
White is checkmated.

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 8/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

(A Brief Note On) Formalization

Definition (Game State Space). A game state space is a 6-tuple
Θ = (S,A, T, I, ST , u) where:

S, A, T , I: States, actions, deterministic transition relation, initial
state. As in classical search problems, except:

S is the disjoint union of SMax, SMin, and ST .
A is the disjoint union of AMax and AMin.
For a ∈ AMax, if s

a−→ s′ then s ∈ SMax and s′ ∈ SMin ∪ ST .
For a ∈ AMin, if s

a−→ s′ then s ∈ SMin and s′ ∈ SMax ∪ ST .

ST is the set of terminal states.

u : ST 7→ R is the utility function.

Commonly used terminology: state=position, terminal state=end
state, action=move.

(A round of the game – one move Max, one move Min – is often referred to as
a “move”, and individual actions as “half-moves”. We do NOT do that here.)
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Why Games are Hard to Solve

Why Games are hard to solve, part 1: → What is a “solution” here?

Definition (Policy). Let Θ be a game state space, and let X ∈ {Max, Min}.
A policy for X is a function pX : SX 7→ AX so that a is applicable to s
whenever pX(s) = a.

We don’t know how the opponent will react, and need to prepare for all
possibilities.

A policy is optimal if it yields the best possible utility for X assuming
perfect opponent play (not formalized here).

In (almost) all games, computing a policy is infeasible. Instead, compute
the next move “on demand”, given the current game state.

Why Games are hard to solve, part 2:

Number of reachable states: in Chess 1040; in Go 10100.

Chess: branching factor ca. 35, hence 1000 per move/counter-move
lookahead. Go: 200, hence 40000.
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Our Agenda for This Chapter

Minimax Search: How to compute an optimal policy?

→ Minimax is the canonical (and easiest to understand) algorithm for
solving games, i.e., computing an optimal policy.

Alpha-Beta Search: How to prune unnecessary parts of the tree?

→ An essential improvement over Minimax.

Evaluation Functions: How to evaluate a game position?

→ Heuristic functions for games, and how to obtain them.

AlphaGo/Zero: How does it work?

→ Overview of the AlphaGo/Zero systems architecture.
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Questionnaire

Question!

When was the first game-playing computer built?

(A): 1941

(C): 1958

(B): 1950

(D): 1965

→ In 1941, a small box beat humans at Nim (take away objects from heaps,
player taking the last object looses).

Question!

Does the video game industry attempt to make the computer
opponents as intelligent as possible?

(A): Yes (B): No

→ In some cases, yes (I guess). In general, no. For example, in Ego-Shooter
games, if your computer opponents did the best they can, you’d be shot
immediately and always.

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 12/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

“Minimax”?

→ We want to compute an optimal move for player “Max”. In other
words: “We are Max, and our opponent is Min.”

Remember:

Max attempts to maximize the utility u(s) of the terminal state that
will be reached during play.

Min attempts to minimize u(s).

So what?

The computation alternates between minimization and maximization
=⇒ hence “Minimax”.
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Example Tic-Tac-Toe

Game tree, current player marked on the left.

Last row: terminal positions with their utility.
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Minimax: Outline

We max, we min, we max, we min . . .

1 Depth-first search in game tree, with Max in the root.

2 Apply utility function to terminal positions.
3 Bottom-up for each inner node n in the tree, compute the utility
u(n) of n as follows:

If it’s Max’s turn: Set u(n) to the maximum of the utilities of n’s
successor nodes.
If it’s Min’s turn: Set u(n) to the minimum of the utilities of n’s
successor nodes.

4 Selecting a move for Max at the root: Choose one move that leads
to a successor node with maximal utility.

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 16/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

Minimax: Example

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Blue numbers: Utility function u applied to terminal positions.

Red numbers: Utilities of inner nodes, as computed by Minimax.
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Minimax: Pseudo-Code

Input: State s ∈ SMax, in which Max is to move.

function Minimax-Decision(s) returns an action
v ← Max-Value(s)
return an action a ∈ Actions(s) yielding value v

function Max-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← −∞
for each a ∈ Actions(s) do
v ← max(v,Min-Value(ChildState(s, a)))

return v

function Min-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← +∞
for each a ∈ Actions(s) do
v ← min(v,Max-Value(ChildState(s, a)))

return v

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 18/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

Minimax: Example, Now in Detail

Max −∞

Max 3

Min ∞

Min 3

3

12 8

Min ∞Min 2

2 4 6

Min ∞Min 14Min 5Min 2

14 5 2

→ So which action for Max is returned?

Leftmost branch.

Note: The maximal
possible pay-off is higher for the rightmost branch, but assuming perfect play of
Min, it’s better to go left. (Going right would be “relying on your opponent to
do something stupid”.)
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Minimax, Pro and Contra

Pro:

Returns an optimal action, assuming perfect opponent play.

Extremely simple.

Contra:

Completely infeasible (search tree way too large).

Remedies:

Limit search depth, apply evaluation function at cut-off states.

Sparse search (MCTS) instead of exhaustive search.

Alpha-beta pruning reduces search yet preserves optimality.
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Minimax With Depth Limit: Example

Notation: blue: evaluation function value on cut-off states; red:
non-cut-off state value as computed by Minimax with depth limit 2.

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

→ Search pretends that states at depth limit d (number of actions i.e. half-moves) are
terminal; requires evaluation function to estimate their values (see later).
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Questionnaire

Black to move

Question!

Who’s gonna win here?

(A): White (B): Black

White wins (Pawn cannot be prevented
from becoming a queen.)

Black has a large advantage in material.
If cut-off is here, then the evaluation
function will say “−100, black wins”.

The loss for black is beyond our horizon
unless we search extremely deeply:
Black can hold off the end by repeatedly
giving check to White’s king.

→ In other words: Minimax is not robust to
inaccurate cut-off evaluations.
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MCTS, Action Choice for Max

Two-Player Zero-Sum MCTS: (algorithm outline)
while time not up do

select actions within T up to a state s′ and s′
a′−→ s′′ s.t. s′′ 6∈ T ,

with bias to maximize (minimize) reward in Max (Min) nodes
rollout from s′′ until terminal state t
add s′′ to T
update, from a′ up to root, #expansions and average rewards with u(t)

return an a for s with maximal average reward(a)
When executing a, keep the part of T below a

Notes:

With suitable selection bias (e.g. UCT [Kocsis and Szepesvári
(2006)]), action decisions in tree converge to optimal.
⇒ Rewards converge to Minimax values.

Sparse deep search = “focus on most relevant moves”.
⇒ Horizon problem not as critical. (May fall prey to “traps” though
[Ramanujan et al. (2010)].)
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Questionnaire

Tic Tac Toe.

Max = x, Min = o.

Max wins: u = 100; Min wins: u = −100;
stalemate: u = 0.

Question!

What’s the Minimax value for the state shown above? (Note:
Max to move)

(A): 100 (B): −100

→ 100: Max moves; choosing the top left corner, it’s a certain win for Max.

Question!

What’s the Minimax value for the initial game state?

(A): 100 (B): −100

→ The correct value (and thus the value computed by Minimax) is 0: Given perfect
play, Tic Tac Toe always results in a stalemate. (Seen “War Games”, anybody?)
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Alpha Pruning: Idea

Max (A)

Max
value: m

Min
value: n

Min (B)

Say n > m.

→ By choosing to go to the left in Max
node (A), Max already can get utility at
least n in this part of the game.

Say that, “later on in the same sub-
tree”, i.e. below a different childnode
of (A), in Min node (B) Min can force
Max to get value m < n.

Then we already know that (B) will be
reached during the game, given the pol-
icy we currently compute for Max (Max
will go to the left in (A)).

Hence we can spare ourselves the effort
of searching the other children of (B).
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Alpha Pruning: The Idea in Our Example

Question:

Can we save some
work here?

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Max ≥ 3

Min 3

3 12 8

Min ≤ 2

2

Min

Answer: Yes!

→ We already
know at this
point that the
middle action
won’t be taken
by Max.
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Alpha Pruning

What is α? For each search node n, the highest Max-node utility that
search has found already on its path to n.

Max −∞;α = −∞

Max 3;α = 3

Min ∞;α = −∞

Min 3;α = −∞

3

12 8

Min ∞;α = 3Min 2;α = 3

2

Min

How to use α? In a Min node n, if one of the children already has utility
≤ α, then stop considering n. (Pruning out its remaining successors.)
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Alpha-Beta Pruning

Reminder:

What is α: For each search node n, the highest Max-node utility
that search has found already on its path to n.

How to use α: In a Min node n, if one of the successors already
has utility ≤ α, then stop considering n. (Pruning out its remaining
successors.)

We can use a dual method for Min:

What is β: For each search node n, the lowest Min-node utility
that search has found already on its path to n.

How to use β: In a Max node n, if one of the successors already
has utility ≥ β, then stop considering n. (Pruning out its remaining
successors.)

. . . and of course we can use both together.
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Alpha-Beta Search: Pseudo-Code

function Alpha-Beta-Search(s) returns an action
v ← Max-Value(s,−∞,+∞)
return an action a ∈ Actions(s) yielding value v

function Max-Value(s, α, β) returns a utility value
if Terminal-Test(s) then return u(s)
v ← −∞
for each a ∈ Actions(s) do
v ← max(v,Min-Value(ChildState(s, a), α, β))
α ← max(α, v)
if v ≥ β then return v /* Here: v ≥ β ⇔ α ≥ β */

return v

function Min-Value(s, α, β) returns a utility value
if Terminal-Test(s) then return u(s)
v ← +∞
for each a ∈ Actions(s) do
v ← min(v,Max-Value(ChildState(s, a), α, β))
β ← min(β, v)
if v ≤ α then return v /* Here: v ≤ α⇔ α ≥ β */

return v

= Minimax (slide 18) + α/β book-keeping and pruning.
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Alpha-Beta Search: Example

Notation: v; [α, β]

Max −∞; [−∞,∞]

Max 3; [3,∞]

Min ∞; [−∞,∞]

Min 3; [−∞, 3]

3

12 8

Min ∞; [3,∞]Min 2; [3, 2]

2

Min ∞; [3,∞]Min 14; [3, 14]Min 5; [3, 5]Min 2; [3, 2]

14 5 2

→ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min node. Choosing the best moves (for each of
Max and Min) first yields more pruning!
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14 5

2
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Alpha-Beta Search: Modified Example

Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

Min 5; [3, 5]Min 2; [3, 2]

5

Max −∞; [3, 5]Max 14; [14, 5]

14

2
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How Much Pruning Do We Get?

→ Choosing best moves first yields most pruning in alpha-beta search.

With branching factor b and depth limit d:

Minimax: bd nodes.

Best case: Best moves first ⇒ bd/2 nodes! Double the lookahead!

Practice: Often possible to get close to best case.

Example Chess:

Move ordering: Try captures first, then threats, then forward moves,
then backward moves.

Double lookahead: E.g. with time for 109 nodes, Minimax 3 rounds
(white move, black move), alpha-beta 6 rounds.
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Questionnaire

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

2 5 14

Question!

How many nodes does alpha-beta prune out here?

(A): 0

(C): 4

(B): 2

(D): 6

→ (C): Same example as before, except that we changed the ordering of the
right-branch leaves to have the best Min move first. Thus the f = 5 and
f = 14 right-branch leaves will now be pruned. As before, the f = 4 and f = 6
middle-branch leaves will be pruned, yielding a total of 4 pruned nodes.
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Evaluation Functions

Definition: Given a game with states S, a (heuristic) evaluation function
is a function h : S 7→ R.

h estimates the expected utility of s. (In particular, we can use
h := u on terminal states)

In Minimax: Impose depth limit, use h at (non-terminal) cut-off
states.

In MCTS: Use h as part of the state-value estimates. (e.g. AlphaGo:
leaf state value estimate is linear combination of h and rollouts)

How to obtain h?

Relaxed game: Possible in principle, too costly in practice.

Encode human expert knowledge.

Learn from data.
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Position Evaluation in Chess

Material: Pawn (Bauer) 1, Knight
(Springer) 3, Bishop (Läufer) 3, Rook
(Turm) 5, Queen (Dame) 9.
→ Rule of thumb:
3 points advantage =⇒ safe win.

Mobility: How many fields do you
control?

King safety, Pawn structure, . . .
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Linear Feature-Based Evaluation Functions

Functions taking the form:

h(s) := w1f1(s) + w2f2(s) + · · ·+ wnfn(s)

fi are features, wi are weights.

How to obtain such functions?

Features fi designed by human experts.

Weights wi set by experts, or learned automatically (see later).

Discussion: Pro/Con

Very fast. (Unless there are many features or computing their value
is very expensive)

Very simplistic. For example, assumes that features are independent.
(But, e.g., value of Rook depends on Pawn structure)

Human knowledge crucial in design of features.
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Feature-Based Evaluation in Chess

Material: Pawn (Bauer) 1, Knight
(Springer) 3, Bishop (Läufer) 3, Rook
(Turm) 5, Queen (Dame) 9.
→ Rule of thumb:
3 points advantage =⇒ safe win.

Mobility: How many fields do you
control?

King safety, Pawn structure, . . .

→ h(s) = ∆pawn(s) + 3 ∗∆knight(s) + 3 ∗∆bishop(s)+
5 ∗∆rook(s) + 9 ∗∆queen(s) (∆: #White−#Black)

+wkkingsafety(s) + wppawnstructure(s)?
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Questionnaire

White to move.

h(s) = ∆pawn(s) +
3 ∗∆knight(s) + 3 ∗∆bishop(s) +
5 ∗∆rook(s) + 9 ∗∆queen(s).

(∆: #White−#Black)

Question!

Say Minimax with depth limit d uses h at cut-off states. Which move
does it choose in this state with d = 1 i.e. considering only the first
action? For which values of d does it choose the best action?

→ With d = 1, Minimax chooses to capture the black bishop due to the
superior material advantage.

→ The best action is to capture the black pawn, as this is the only way to
prevent it from turning into a queen. To see this, we need d ≥ 4.
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Supervised Learning of Evaluation Functions
(for Reference Only!)

Human expert annotates states with evaluation-function value
⇒ standard supervised learning problem.

Set of annotated states, i.e., state/value pairs (s, v).

Learn ML model that predicts output v from input s.

Possible ML methods: arbitrary . . .

Classic approach: learn weights in feature-based evaluation function.

Recent breakthrough successes: neural networks!
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Policies & Supervised Learning (for Reference Only!)

Definition: By p, we denote a (combined) policy for both players. A
probabilistic policy returns a probability distribution over actions instead.

An optimal policy captures perfect play from both players.

(Probabilistic) policies can be used as search guidance in MCTS:
action selection in tree, action selection in rollouts.

Supervised learning of policies:

Human expert annotates states with preferred moves
⇒ standard supervised classification problem.

Way more natural for humans; side effect of expert game play.

e.g. KGS Go Server: 30 million positions with expert moves, used
for training in AlphaGo.
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Learning from Self-Play (for Reference Only!)

Self-play for reinforcement learning:

Repeat: play a game using the current h and/or p; at each step (st, at)
along the game trace, reinforce the game outcome in h and/or p.

Evaluation function learning: update weights in h to reduce the
error h(st)− game-outcome-value.

Probabilistic policy learning: update weights in p to increase (game
won)/decrease (game lost) the likelihood of choosing at in st.

Self-play to generate data for supervised learning:

Fix policy p. Repeat: play game using p; annotate the states in each
game trace with the game outcome value.

Use this data for supervised learning of evaluation function.

Might sound strange, but actually successful: used in AlphaGo.
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AlphaGo/Zero

AlphaGo, March 2016: [Silver et al. (2016)]

beats Lee Sedol (winner of 18 world titles).

MCTS guided by neural networks (NN), trained by expert data and
self-play.

AlphaGo Zero, early 2017: [Silver et al. (2017)]

beats AlphaGo using NN trained without expert data.

AlphaZero, late 2017: [Silver et al. (2018)]

beats world-class computer players in Go, chess, and shogi.

→ We give a brief overview in what follows.
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Learning in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

SL policy network pσ: Supervised learning from human expert data (cf. slide 42).

Rollout policy pπ: Simple but fast version of pσ (linear feature based function for
each action, cf. slide 38; combined by softmax).

RL policy network pρ: Start with pσ, improve by reinforcement learning from
self-play (cf. slide 43).

Value network vθ: Supervised learning, training data generated by self-play using
pσ (cf. slide 43).
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MCTS in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

SL policy network pσ: Action choice bias (along with average value Q) within
the tree (“P”, gets smaller to “u(P )” with number of visits).

Rollout policy pπ: Action choice in rollouts.

RL policy network pρ: Not used here (used only to learn vθ).

Value network vθ: Used to evaluate leaf states s, in weighted linear sum with the
value returned by a random sample on s.
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Neural Networks in AlphaGo

(Illustration and text taken from [Silver et al. (2016)])

Architecture from image classification: convolutional NN, softmax at end.

“Image” = game board, multiple feature planes encoding game rules (stone
liberties etc.) visually.

Size “small” compared to recent results in image classification: Work done in
2014–2016, leveraging NN architecture of that time. This changes next . . .
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Learning in AlphaGo Zero

Illustration: (taken from [Silver et al. (2017)])

Self-play:

Game: MCTS guided by
current neural network.

Learning: update weights
to reduce error of v, and
to move p closer to action
πi chosen by MCTS.

MCTS controls
exploitation vs. exploration
trade-off for reinforcement
learning.

Single neural network fθ:

Output (p, v): move
probabilities p, value v.
→ Probabilistic policy and
evaluation function.

Residual blocks [He et al.
(2016)], much improved
performance.
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MCTS in AlphaGo Zero

Illustration: (taken from [Silver et al. (2017)])

Basically as in AlphaGo.

Except: No rollouts! Leaf-state evaluation = NN output v.

→ Monte-Carlo tree search without “Monte-Carlo” :-) . . . like a
heuristic search with MCTS-style node-expansion strategy.
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Neural Network (Singular!) in AlphaGo Zero

(Illustration and text taken from [Silver et al. (2017)])

Architecture from more recent image classification works: now includes residual
blocks ⇒ Enables much deeper network.

Evaluation function and policy are just different “heads” to the same network.

19 vs. 39 residual blocks: 19 in an initial system version; 39 in the final version.

→ Keys to success: 1. Integration of reinforcement learning with MCTS. 2. Leveraging
recent NN architectures, in particular residual blocks.
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Changes in AlphaZero

AlphaGo Zero with relatively small changes . . .

No symmetry handling (applies only to Go).

Various smallish details/parameters in configurations.

. . . generalizes very well to chess and shogi:

Hoffmann and Koehler Artificial Intelligence Chapter 7: Adversarial Search 52/61



Introduction Minimax Search Alpha-Beta Search Evaluation Fns AlphaGo/Zero Conclusion References

Across AlphaGo/Zero: NN Input/Output Representation

AlphaZero:

Input: “N ×N × (MT + L) image stack . . . each set of planes
represents the board position at a time-step . . . “.

Output: “move in chess . . . 8× 8× 73 stack of planes . . . first 56
planes represent possible queen moves for any piece . . . ”.

→ Image-like representation of both, game state and moves. Crucial for
success of NN methods originating in image classification.

AlphaGo Zero and AlphaGo:

Similar.

Just easier for Go than for chess and shogi.
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AlphaGo/Zero: Conclusion

Amazing progress!

→ “Search & Learn NN” seems a great recipe for AI action decisions.

I expect lots of research on this in the coming years – in my own research
group amongst many others.

Limitations: Beyond (board) games?

1 How well does this generalize to problems with no image-like
structure? With incomplete information? Multiple agents? Where
random play does not produce interesting data?

2 How to find “the right” hyperparameters (NN architecture etc)?
Especially without > 20 full-time researchers and “5000
first-generation tensor processing units (TPUs)”?

3 In many problems, generating training data is not easy (“mild”
example: autonomous driving; extreme example: NASA).
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Beyond Board Games: Progress on Limitation 1

StarCraft: [Vinyals et al. (2019)]

Game map (≈ board) plus other lists/sets data (unit attributes etc).
→ “Scatter connections” in NN architecture.

Incomplete information, need move history to judge game state.
→ Long short-term memory NN architecture.

Multiple collaborative and competitive agents.
→ Multi-agent self-play learning (each agent separate NN).

Random play does not produce interesting strategies (hence self-play
reinforcement learning insufficient on its own).
→ Human knowledge (supervised learning and more).

Generalization beyond StarCraft unclear at this point.

OpenAI Dota: Related techniques; details not (yet?) available.
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Summary

Games (2-player turn-taking zero-sum discrete and finite games) can be
understood as a simple extension of classical search problems.

Each player tries to reach a terminal state with the best possible utility
(maximal vs. minimal).

Minimax searches the game depth-first, max’ing and min’ing at the
respective turns of each player. It yields perfect play, but takes time O(bd)
where b is the branching factor and d the search depth.

Except in trivial games (Tic-Tac-Toe), Minimax needs a depth limit and
apply an evaluation function to estimate the value of the cut-off states.

Alpha-beta search remembers the best values achieved for each player
elsewhere in the tree already, and prunes out sub-trees that won’t be
reached in the game.

Monte-Carlo tree search (MCTS) samples game branches, and averages
the findings. AlphaGo/Zero uses neural networks to learn evaluation
functions and approximate policies in MCTS.
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Reading

Chapter 5: Adversarial Search, Sections 5.1 – 5.4 [Russell and
Norvig (2010)].

Content: Section 5.1 corresponds to my “Introduction”, Section 5.2
corresponds to my “Minimax Search”, Section 5.3 corresponds to
my “Alpha-Beta Search”. I have tried to add some additional
clarifying illustrations. RN gives many complementary explanations,
nice as additional background reading.

Section 5.4 corresponds to my “Evaluation Functions”, but discusses
additional aspects relating to narrowing the search and look-up from
opening/termination databases. Nice as additional background
reading.

I suppose a discussion of MCTS and AlphaGo will be added to the
next edition . . .
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