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Let’s Talk About Blocks, Baby . . .

Dear students: What do you see here?

A D B E C

You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

And now: Say it in propositional logic!

→ “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

Wait a sec! Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

→ Could we conclude that A is red? No. These statements are atomic (just
strings); their inner structure (“all blocks”, “is a block”) is not captured.

→ Predicate Logic extends propositional logic with the ability to explicitly speak
about objects and their properties.

→ Variables ranging over objects, predicates describing object properties, . . .
→ ”∀x[Block(x)→ Red(x)]”; “Block(A)”

→ We consider first-order logic, and will abbreviate PL1.
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Let’s Talk About the Wumpus Instead?

Percepts: [Stench,Breeze,Glitter ,Bump,Scream]

Cell adjacent to Wumpus: Stench (else: None).

Cell adjacent to Pit: Breeze (else: None).

Cell that contains gold: Glitter (else: None).

You walk into a wall: Bump (else: None).

Wumpus shot by arrow: Scream (else: None).

Say, in propositional logic: “Cell adjacent to Wumpus: Stench.”

W1,1 → S1,2 ∧ S2,1

W1,2 → S2,2 ∧ S1,1 ∧ S1,3

W1,3 → S2,3 ∧ S1,2 ∧ S1,4

. . .

→ Even when we can describe the problem suitably, for the desired reasoning,
the propositional formulation typically is way too large to write (by hand).

→ PL1 solution: “∀x[Wumpus(x)→ ∀y[Adjacent(x, y)→ Stench(y)]]
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Blocks/Wumpus, Who Cares? Let’s Talk About Numbers!

→ Even worse!

Example “Integers”: (A limited vocabulary to talk about these)

The objects: {1, 2, 3, . . . }.
Predicate 1: “Even(x)” should be true iff x is even.

Predicate 2: “Equals(x, y)” should be true iff x = y.

Function: Succ(x) maps x to x+ 1.

Old problem: Say, in propositional logic, that “1 + 1 = 2”.

→ Inner structure of vocabulary is ignored (cf. “AllBlocksAreRed”).

→ PL1 solution: “Equals(Succ(1), 2)”.

New problem: Say, in propositional logic, “if x is even, so is x+ 2”.

→ It is impossible to speak about infinite sets of objects!

→ PL1 solution: “∀x[Even(x)→ Even(Succ(Succ(x)))]”.
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Now We’re Talking . . .

∀y, x1, x2, x3 [Equals(Plus(PowerOf (x1, y),PowerOf (x2, y)),
PowerOf (x3, y))

→ (Equals(y, 1) ∨ Equals(y, 2))]

Theorem proving in PL1! Arbitrary theorems, in principle.

Fermat’s last theorem is of course infeasible, but interesting theorems
can and have been proved automatically.
See http://en.wikipedia.org/wiki/Automated_theorem_proving.

Note: Need to axiomatize “Plus”, “PowerOf”, “Equals”.
See http://en.wikipedia.org/wiki/Peano_axioms
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What Are the Practical Relevance/Applications?

. . . even asking this question is a sacrilege: (Quotes from Wikipedia)

“In Europe, logic was first developed by Aristotle. Aristotelian logic
became widely accepted in science and mathematics.”

“The development of logic since Frege, Russell, and Wittgenstein had a
profound influence on the practice of philosophy and the perceived nature

of philosophical problems, and Philosophy of mathematics.”

“During the later medieval period, major efforts were made to show that
Aristotle’s ideas were compatible with Christian faith.” In other words:
the Catholic church decreed for a long time that Aristotle’s ideas were

incompatible with Christian faith.

Hoffmann and Koehler Artificial Intelligence Chapter 5: Predicate Logic Reasoning, Part I 7/44



Introduction Syntax Semantics Normal Forms Conclusion References

What Are the Practical Relevance/Applications?

You’re asking it anyhow?

Logic programming. Prolog et al.

Databases. Deductive databases where elements of logic allow to
conclude additional facts. Logic is tied deeply with database theory.

Semantic technology. Large trend since 2 decades. Use PL1
fragments to annotate data sets, facilitating their use and analysis.

→ Prominent PL1 fragment: Web Ontology Language OWL.

→ Prominent data set: The WWW. (→ Semantic Web)

Assorted quotes on Semantic Web and OWL:

“The brain of humanity.”

“The Semantic Web will never work.”

“A TRULY meaningful way of interacting with the Web may finally be here: the
Semantic Web. The idea was proposed 10 years ago. A triumvirate of internet

heavyweights – Google, Twitter, and Facebook – are making it real.”
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(A Few) Semantic Technology Applications

Semantic Queries Jeopardy (IBM Watson)

Context-Aware Apps Healthcare Data
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Our Agenda for This Topic

→ Our treatment of the topic “Predicate Logic Reasoning” consists of
Chapters 5 and 6.

This Chapter: Basic definitions and concepts; normal forms.

→ Sets up the framework and basic operations.

Chapter 6: Compilation to propositional reasoning; unification;
lifted resolution.

→ Algorithmic principles for reasoning about predicate logic.
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Our Agenda for This Chapter

Syntax: How to write PL1 formulas?

→ Obviously required.

Semantics: What is the meaning of PL1 formulas?

→ Obviously required.

Normal Forms: What are the basic normal forms, and how to
obtain them?

→ Needed for algorithms, which are defined on these normal forms.
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The Alphabet of PL1

General symbols:

Variables: x, x1, x2, . . . , x′, x′′, . . . , y, . . . , z, . . .

Truth/Falseness: >, ⊥. (As in propositional logic)

Operators: ¬, ∨, ∧, →, ↔. (As in propositional logic)

Quantifiers: ∀, ∃.
→ Precedence: ¬ > ∀,∃ > . . . (we’ll be using brackets).

Application-specific symbols:

Constant symbols (“object”, e.g., BlockA, BlockB , a, b, c, . . . )

Predicate symbols, arity ≥ 1 (e.g., Block(.), Above(., .))

Function symbols, arity ≥ 1 (e.g., WeightOf (.), Succ(.))

Definition (Signature). A signature Σ in predicate logic is a finite set
of constant symbols, predicate symbols, and function symbols.

→ In mathematics, Σ can be infinite; not considered here.
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Our “Silly Running Example”: Lassie & Garfield

Constant symbols: Lassie, Garfield , Bello, Lasagna, . . .

Predicate symbols: Dog(.), Cat(.), Eats(., .), Chases(., .), . . .

Function symbols: FoodOf (.), . . .

Example: ∀x[Dog(x)→ ∃yChases(x, y)], which in words means “Every
dog chases something”.

[We’ll be showing the Lassie & Garfield example in this color and square
brackets all over the place.]
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Syntax of PL1

→ Terms represent objects:

Definition (Term). Let Σ be a signature. Then:

1. Every variable and every constant symbol is a Σ-term. [x, Garfield ]

2. If t1, t2, . . . , tn are Σ-terms and f ∈ Σ is an n-ary function symbol,
then f(t1, t2, . . . , tn) also is a Σ-term. [FoodOf (x)]

Terms without variables are ground terms. [FoodOf (Garfield)]

→ For simplicity, we usually don’t write the “Σ-”.

→ Atoms represent atomic statements about objects:

Definition (Atom). Let Σ be a signature. Then:

1. > and ⊥ are Σ-atoms.

2. If t1, t2, . . . , tn are terms and P ∈ Σ is an n-ary predicate symbol,
then P (t1, t2, . . . , tn) is a Σ-atom. [Chases(Lassie, y)]

Atoms without variables are ground atoms. [Chases(Lassie,Garfield)]
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Syntax of PL1, ctd.

→ Formulas represent complex statements about objects:

Definition (Formula). Let Σ be a signature. Then:

1. Each Σ-atom is a Σ-formula.

2. If ϕ is a Σ-formula, then so is ¬ϕ.

The formulas that can be constructed by rules 1. and 2. are literals.

If ϕ and ψ are Σ-formulas, then so are:

3. ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, and ϕ↔ ψ.

If ϕ is a Σ-formula and x is a variable, then

4. ∀xϕ is a Σ-formula (“Universal Quantification”).

5. ∃xϕ is a Σ-formula (“Existential Quantification”).

→ [E.g., Cat(Garfield) ∨ ¬Cat(Garfield); and ∃x[Eats(Garfield , x)]]
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Alternative Notation

Here Elsewhere

¬ϕ ∼ϕ ϕ

ϕ ∧ ψ ϕ&ψ ϕ • ψ ϕ,ψ

ϕ ∨ ψ ϕ|ψ ϕ;ψ ϕ+ ψ

ϕ→ ψ ϕ⇒ ψ ϕ ⊃ ψ
ϕ↔ ψ ϕ⇔ ψ ϕ ≡ ψ
∀xϕ (∀x)ϕ ∧ xϕ
∃xϕ (∃x)ϕ ∨ xϕ
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Questionnaire

Example “Animals” Σ: Constant symbols
{Lassie,Garfield ,Bello,Lasagna}; predicate symbols {Dog(.), Cat(.),
Eats(., .), Chases(., .)}; funtion symbols {FoodOf (.)}.

Question!

Which of these are Σ-formulas?
(A): ∀x[Chases(x,Garfield)→

Chases(Lassie, x)]

(C): ∀x[(Dog(x) ∧
Eats(x,Lasagna))→
∃y(Cat(y) ∧ Chases(y, x))]

(B): Eats(Bello,Cat(Garfield))

(D): ∃x[Dog(x) ∧
Eats(x,Lasagna)
∀y(Cat(y)→
Chases(y, x))]

→ (A), (C): Yes.

→ (B): No, we can’t nest predicates.

→ (D): No, missing a connective between “Eats(x,Lasagna)” and
“∀y(Cat(y)→ Chases(y, x))”.
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Questionnaire, ctd.

Example “Integers” Σ: Constant symbols {1, 2, 3, . . . }; predicate
symbols {Even(.), Equals(., .)}; funtion symbols {Succ(.)}.

Question!

Which of these are Σ-formulas?
(A): ∃x[Even(x)→

Even(Succ(Succ(x)))].

(C): Even(1)→
∀xEquals(x,Succ(x)).

(B): ∃x[Even(x)→
Succ(Even(Succ(x)))].

(D): Even(1)→ ∀2Equals(2, 2).

→ (A): Yes.

→ (B): No, we can’t apply a function to a predicate.

→ (C): Yes.

→ (D): No, we can’t quantify over constants.
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The Meaning of PL1 Formulas

Example: ∀x[Block(x)→ Red(x)], Block(A)

→ For all objects x, if x is a block, then x is red. A is a block.

More generally: (Intuition)

Terms represent objects. [FoodOf (Garfield) = Lasagna]

Predicates represent relations on the universe.
[Dog = {Lassie,Bello}]
Universally-quantified variables: “for all objects in the universe”.

Existentially-quantified variables: “at least one object in the
universe”.

→ Similar to propositional logic, we define interpretations, models,
satisfiability, validity, . . .
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Semantics of PL1: Interpretations

Definition (Interpretation). Let Σ be a signature. A Σ-interpretation is a pair
(U, I) where U , the universe, is an arbitrary non-empty set [U = {o1, o2, . . . }],
and I is a function, notated as superscript, so that

1. I maps constant symbols to elements of U : cI ∈ U [LassieI = o1]
2. I maps n-ary predicate symbols to n-ary relations over U :

P I ⊆ Un [DogI = {o1, o3}]
3. I maps n-ary function symbols to n-ary functions over U :

f I ∈ [Un 7→ U ] [FoodOf I = {(o1 7→ o4), (o2 7→ o5), . . . }]
→ We will often refer to I as the interpretation, omitting U . Note that U may
be infinite.

Definition (Ground Term Interpretation). The interpretation of a ground
term under I is (f(t1, . . . , tn))I = f I(tI1, . . . , t

I
n). [(FoodOf (Lassie))I =

FoodOf I(LassieI) = FoodOf I(o1) = o4]

Definition (Ground Atom Satisfaction). Let Σ be a signature and I a
Σ-interpretation. We say that I satisfies a ground atom P (t1, . . . , tn), written
I |= P (t1, . . . , tn), iff (tI1, . . . , t

I
n) ∈ P I . We also call I a model of

P (t1, . . . , tn). [I |= Dog(Lassie) because LassieI = o1 ∈ DogI ]
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Interpretations: Example

Example “Integers”: U = {1, 2, 3, . . .}; 1I = 1, 2I = 2, 3I = 3, . . . ;
EvenI = {2, 3, 4, 6, . . .}, EqualsI = {〈1, 1〉, 〈2, 2〉, . . .};
SuccI = {(1 7→ 2), (2 7→ 3), . . .}.
Question 1: I |= Even(2)? Yes.

Question 2: I |= Even(Succ(2))? Yes! Succ(2)I = 3 ∈ EvenI .

Note: Nobody forces us to design I in accordance with the standard
meaning of the predicates. Need to axiomatize them. [Remember:

∀y, x1, x2, x3 [Equals(Plus(PowerOf (x1, y),PowerOf (x2, y)),
PowerOf (x3, y))

→ (Equals(y, 1) ∨ Equals(y, 2))]

→ Details: http://en.wikipedia.org/wiki/Peano_axioms]

Question 3: I |= Equals(x,Succ(2))? Interpretations do not handle
variables. We must fix a variable assignment first.
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http://en.wikipedia.org/wiki/Peano_axioms


Introduction Syntax Semantics Normal Forms Conclusion References

Semantics of PL1: Variable Assignments

Definition (Variable Assignment). Let Σ be a signature and (U, I) a
Σ-interpretation. Let X be the set of all variables. A variable assignment α is a
function α : X 7→ U . [α(x) = o1]

Definition (Term Interpretation). The interpretation of a term under I and α
is:

1. xI,α = α(x) [xI,α = o1]

2. cI,α = cI [LassieI,α = LassieI ]

3. (f(t1, . . . , tn))I,α = f I(tI,α1 , . . . , tI,αn )

[(FoodOf (x))I,α = FoodOf I(xI,α) = FoodOf I(o1) = o4]

Definition (Atom Satisfaction). Let Σ be a signature, I a Σ-interpretation,
and α a variable assignment. We say that I and α satisfy an atom
P (t1, . . . , tn), written I, α |= P (t1, . . . , tn), iff (tI,α1 , . . . , tI,αn ) ∈ P I . We also
call I and α a model of P (t1, . . . , tn).

[I, α 6|= Dog(FoodOf (x)): (FoodOf (x))I,α = o4 6∈ DogI ]
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Semantics of PL1: Formula Satisfaction

Notation: In αx
o we overwrite x with o in α: for

α = {(x 7→ o1), (y 7→ o2), , . . .}, αx
o = {(x 7→ o), (y 7→ o2), , . . .}.

Definition (Formula Satisfaction). Let Σ be a signature, I a
Σ-interpretation, and α a variable assignment. We set:

I, α |= > and I, α 6|= ⊥
I, α |= ¬ϕ iff I, α 6|= ϕ
I, α |= ϕ ∧ ψ iff I, α |= ϕ and I, α |= ψ
I, α |= ϕ ∨ ψ iff I, α |= ϕ or I, α |= ψ
I, α |= ϕ→ ψ iff if I, α |= ϕ, then I, α |= ψ
I, α |= ϕ↔ ψ iff if I, α |= ϕ if and only if I, α |= ψ
I, α |= ∀xϕ iff for all o ∈ U we have I, αx

o |= ϕ
I, α |= ∃xϕ iff there exists o ∈ U so that I, αx

o |= ϕ

If I, α |= ϕ, we say that I and α satisfy ϕ (are a model of ϕ).

[ϕ = ∀x[Dog(x) → ∃yChases(x, y)], DogI,α = {LassieI,α,BelloI,α}, ChasesI,α =
{(LassieI,α,GarfieldI,α)}. Then I, α 6|= ϕ because Bello does not chase anything.]
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PL1 Satisfiability etc.

Satisfiability

A PL1 formula ϕ is:

satisfiable if there exist I, α that satisfy ϕ.

unsatisfiable if ϕ is not satisfiable.

falsifiable if there exist I, α that do not satisfy ϕ.

valid if I, α |= ϕ holds for all I and α. We also call ϕ a tautology.

Entailment and Equivalence

ϕ entails ψ, ϕ |= ψ, if every model of ϕ is a model of ψ.
ϕ and ψ are equivalent, ϕ ≡ ψ, if ϕ |= ψ and ψ |= ϕ.

Attention: In presence of free variables!

→ Do we have Dog(x) |= Dog(y)? No. Example: DogI = {o1},
α = {(x 7→ o1), (y 7→ o2)}. Then I, α |= Dog(x) but I, α 6|= Dog(y).
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Free and Bound Variables

ϕ := ∀x[R( y , z ) ∧ ∃y(¬P (y, x) ∨R(y, z ))]

Definition (Free Variables). By vars(e), where e is either a term or a
formula, we denote the set of variables occuring in e. We set:

free(P (t1, . . . , tn)) := vars(t1) ∪ · · · ∪ vars(tn)
free(¬ϕ) := free(ϕ)

free(ϕ ∗ ψ) := free(ϕ) ∪ free(ψ) for ∗ ∈ {∧,∨,→,↔}
free(∀xϕ) := free(ϕ) \ {x}

free(∃xϕ) := free(ϕ) \ {x}
free(ϕ) are the free variables of ϕ. ϕ is closed if free(ϕ) = ∅.
→ In the above ϕ, which variable appearances are free? The boxed ones.

→ Knowledge Base (aka logical theory) = set of closed formulas. From
now on, we asume that ϕ is closed.

→ We can ignore α, and will write I |= ϕ instead of I, α |= ϕ.
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Questionnaire

Example “Animals”: U = {o1, o2, o3, o4, o5}; LassieI = o1, GarfieldI = o2,
BelloI = o3, LasagnaI = o4, ChappiI = o5; DogI = {o1, o3}, CatI = {o2},
EatsI = {(o1, o4), (o2, o4), (o3, o5)}, ChasesI = {(o1, o3), (o3, o2), (o2, o1)}.

Question!

For which of these ϕ do we have I |= ϕ?

(A): ∀x[Chases(x,Garfield)→
Chases(Lassie, x)]

(C): ∀x[(Dog(x) ∧
Eats(x,Lasagna))→
∃y(Cat(y) ∧ Chases(y, x))]

(B): Eats(Bello,Cat(Garfield))

(D): ∃x[Dog(x) ∧
Eats(x,Lasagna) ∧
∀y(Cat(y)→
Chases(y, x))]

→ (A): Yes. (Only Bello chases Garfield; Lassie chases Bello.)

→ (B): Not a formula (cf. slide 17).

→ (C): Yes. (The only dog eating Lasagna is Lassie; Garfield chases Lassie.)

→ (D): Yes. (Lassie is a dog eating Lasagna; it is chased by the only cat, Garfield.)
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Questionnaire, ctd.

Example “Integers”: U = {1, 2, 3, . . .}; 1I = 1, 2I = 2, . . . ;
EvenI = {2, 4, 6, . . .}, EqualsI = {〈1, 1〉, 〈2, 2〉, . . .};
SuccI = {(1 7→ 2), (2 7→ 3), . . .}.

Question!

For which of these ϕ do we have I |= ϕ?

(A): ∃x[Even(x)→
Even(Succ(Succ(x)))].

(C): Even(1)→
∀xEquals(x,Succ(x)).

(B): ∃x[Even(x)→
Succ(Even(Succ(x)))].

(D): Even(1)→
∀2Equals(2,Succ(2)).

→ (A): Yes: x = 2 does the job. Actually we can strengthen the formula to
∀x[Even(x) → Even(Succ(Succ(x)))].

→ (B): Not a formula (cf. slide 18).

→ (C): Yes: While ∀xEquals(x,Succ(x)) is false, Even(1) is false as well and thus the
overall implication is true.

→ (D): Not a formula (cf. slide 18).
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Before We Begin

Why normal forms?

Convenient: full syntax when describing the problem at hand.

Not convenient: full syntax when solving the problem.

“Solving the problem”? Decide satisfiability!

→ Tackles deduction as well as other applications. (Same as in
propositional logic, cf. Chapter 4.)

Which normal forms?

Prenex normal form: Move all quantifiers up front.

Skolem normal form: Prenex, + remove all existential quantifiers
while preserving satisfiability.

Clausal normal form: Skolem, + CNF transformation while
preserving satisfiability.
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Prenex Normal Form: Step 1

quantifier prefix + (quantifier-free) matrix

Qx1Qx2Qx3 . . . Qxn ϕ

Step 1: Eliminate → and ↔, move ¬ inwards

1 (ϕ↔ ψ) ≡ [(ϕ→ ψ) ∧ (ψ → ϕ)] (Eliminate “↔”)

2 (ϕ→ ψ) ≡ (¬ϕ ∨ ψ) (Eliminate “→”)

3 ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ)

¬∀xϕ ≡ ∃x¬ϕ and ¬∃xϕ ≡ ∀x¬ϕ (Move “¬” inwards)

Example: ¬∀x[(∀xP (x))→ R(x)]

Eliminate → and ↔: ¬∀x[¬(∀xP (x)) ∨R(x)].

Move ¬ across first quantifier: ∃x¬[¬(∀xP (x)) ∨R(x)].

Move ¬ inwards: ∃x[(∀xP (x)) ∧ ¬R(x)].
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Prenex Normal Form: Step 2

quantifier prefix + (quantifier-free) matrix

Qx1Qx2Qx3 . . . Qxn ϕ

Step 2: Move quantifiers outwards

(∀xϕ) ∧ ψ ≡ ∀x(ϕ ∧ ψ), if x not free in ψ.

(∀xϕ) ∨ ψ ≡ ∀x(ϕ ∨ ψ), if x not free in ψ.

(∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ), if x not free in ψ.

(∃xϕ) ∨ ψ ≡ ∃x(ϕ ∨ ψ), if x not free in ψ.

Example “Animals”: ∀x[¬Dog(x) ∨ ∃yChases(x, y)]

→ Move “∃y” outwards: ∀x∃y[¬Dog(x) ∨ Chases(x, y)].

Example: ∃x[(∀xP (x)) ∧ ¬R(x)]

→ We can’t move “∀x” outwards because x is free in “ψ = ¬R(x)”.
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Prenex Normal Form: Variable Renaming

Notation: If x is a variable, t a term, and ϕ a formula, then the
instantiation of x with t in ϕ, written ϕx

t , replaces all free appearances
of x in ϕ by t. If t = y is a variable, then ϕx

y renames x to y in ϕ.

Lemma. If y 6∈ vars(ϕ), then ∀xϕ ≡ ∀yϕx
y and ∃xϕ ≡ ∃yϕx

y .

Step 2 Addition: Rename variables if needed

For each Step 2 rule: If x is free in ψ, then rename x in (∀xϕ)
respectively (∃xϕ) to some new variable y. Then, the rule can be applied.

Example: ∃x[(∀xP (x)) ∧ ¬R(x)]

→ Rename x
y in (∀xP (x)): ∃x[(∀yP (y)) ∧ ¬R(x)].

→ Move ∀y outwards: ∃x∀y[P (y) ∧ ¬R(x)].

Theorem. There exists an algorithm that, for any PL1 formula ϕ,
efficiently (i.e., in polynomial time) calculates an equivalent formula in
prenex normal form. (Proof: We just outlined that algorithm.)
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Skolem Normal Form

universal prefix + (quantifier-free) matrix

∀x1∀x2∀x3 . . . ∀xn ϕ

Theorem (Skolem). Let ϕ = ∀x1 . . . ∀xk∃yψ be a closed PL1 formula in
prenex normal form, such that all quantified variables are pairwise distinct, and
the k-ary function symbol f does not appear in ϕ. Then ϕ is satisfiable if and
only if ∀x1 · · · ∀xkψ y

f(x1,...,xk)
is satisfiable. (Proof omitted.)

Note: Here, “0-ary function symbol” = constant symbol.

Transformation to Skolem normal form

Rename quantified variables until distinct. Then iteratively remove the outmost
existential quantifier, using Skolem’s theorem.

Example. ∃x∀y∃zR(x, y, z) is transformed to:

→ Remove“∃x”: ∀y∃zR(f, y, z). Remove“∃z”: ∀yR(f, y, g(y)).

→ Note the arity/arguments of f vs. g: “x1 . . . xk” in the above!
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Skolem Normal Form, ctd.

Notation: A formula is in Skolem normal form (SNF) if it is in prenex normal
form and has no existential quantifiers.

Theorem. There exists an algorithm that, for any closed PL1 formula ϕ,
efficiently calculates an SNF formula that is satisfiable iff ϕ is. We denote that
formula ϕ∗. (Proof: We just outlined that algorithm.)

Example 1: (a) ϕ1 = ∃y∀x[¬Dog(x) ∨Chases(x, y)]: “There exists a y chased
by every dog x”. (b) ϕ∗

1 = ∀x[¬Dog(x) ∨ Chases(x, f)]: “The object named f
is chased by every dog x”.

Example 2: (a) ϕ2 = ∀x∃y[¬Dog(x) ∨ Chases(x, y)]: “For every dog x, there
exists y chased by x”. (b) ϕ∗

2 = ∀x[¬Dog(x) ∨ Chases(x, f(x))]: “For every
dog x, we can interprete f(x) with a y chased by x”.

→ Satisfying existential quantifier behind universally quantified variables
x1, . . . , xk = choosing values for a function of x1, . . . , xk.

Note: ϕ∗ is not equivalent to ϕ. It is more specific: ϕ∗ implies ϕ, but not vice versa.
Example: ϕ = ∃x Dog(x), DogI = {Lassie,Bello}, ϕ∗ = Dog(f), fI = Garfield .
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Questionnaire

Question!

Which are Skolem normal forms of
∀x∃y[¬Dog(x) ∨ ¬Eats(x,Lasagna) ∨ (Cat(y) ∧ Chases(y, x))]?

(A): ∀x∃y[¬Dog(x) ∨
¬Eats(x,Lasagna) ∨
(Cat(f(x)) ∧
Chases(f(x), x))]

(C): ∀x[¬Dog(x) ∨
¬Eats(x,Lasagna) ∨
(Cat(f(x)) ∧
Chases(f(x), x))]

(B): ∀x[¬Dog(x) ∨
¬Eats(x,Lasagna) ∨
(Cat(f) ∧ Chases(f, x))]

(D): ∀x[¬Dog(x) ∨
¬Eats(x,Lasagna) ∨
(Cat(g(x))∧Chases(g(x), x))]

→ (A): No, we need to remove the existential quantifier over y. (B): No, f needs x as
an argument. (C): Yes: “∃y” is removed, and “y” is replaced by a new function
symbol with argument x. (D): Same as (C).

→ Note the different function symbols in (C) and (D): The Skolem normal form is
unique up to renaming of function symbols.
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Clausal Normal Form

universal prefix + disjunction of literals

∀x1∀x2∀x3 . . . ∀xn(l1 ∨ · · · ∨ ln)

→ Written {l1, . . . , ln}.

Transformation to clausal normal form

1 Transform to SNF: ∀x1∀x2∀x3 · · · ∀xn ϕ.
2 Transform ϕ to satisfiability-equivalent CNF ψ. (Same as in

propositional logic.)
3 Write as set of clauses: One for each disjunction in ψ.
4 Standardize variables apart: Rename variables so that each occurs in

at most one clause. (Needed for PL1 resolution, Chapter 12.)

Theorem. There exists an algorithm that, for any closed PL1 formula ϕ,
efficiently calculates a formula in clausal normal form that is satisfiable iff
ϕ is. (Proof: We just outlined that algorithm.)
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All 3 Transformations: Example

∀x[∀y(Animal(y)→ Loves(x, y))→ ∃yLoves(y, x)]

→ Means what? “Everyone who loves all animals is loved by someone.”

1. Eliminate equivalences and implications:

∀x[¬∀y(¬Animal(y) ∨ Loves(x, y)) ∨ ∃yLoves(y, x)]

2. Move negation inwards:

∀x[∃y¬(¬Animal(y) ∨ Loves(x, y)) ∨ ∃yLoves(y, x)]

∀x[∃y(¬¬Animal(y) ∧ ¬Loves(x, y)) ∨ ∃yLoves(y, x)]

∀x[∃y(Animal(y) ∧ ¬Loves(x, y)) ∨ ∃yLoves(y, x)]

3. Move quantifiers outwards: → Prenex normal form.

∀x∃y[(Animal(y) ∧ ¬Loves(x, y)) ∨ ∃yLoves(y, x)]
→ Note: y is not free in “∃yLoves(y, x)”.

∀x∃y∃z[(Animal(y) ∧ ¬Loves(x, y)) ∨ Loves(z, x)]
→ Note: y is free in “(Animal(y) ∧ ¬Loves(x, y))”.
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All 3 Transformations: Example, ctd.

∀x∃y∃z[(Animal(y) ∧ ¬Loves(x, y)) ∨ Loves(z, x)]

4. Make quantified variables distinct: (Nothing to do)

5. Remove existential quantifiers: → Skolem normal form.

∀x∃z[(Animal(f(x)) ∧ ¬Loves(x, f(x))) ∨ Loves(z, x)]

∀x[(Animal(f(x)) ∧ ¬Loves(x, f(x))) ∨ Loves(g(x), x)]

6. Transform to CNF:

∀x[(Animal(f(x))∨Loves(g(x), x))∧ (¬Loves(x, f(x))∨Loves(g(x), x))]

7. Write as set of clauses:

{{Animal(f(x)),Loves(g(x), x)}, {¬Loves(x, f(x)),Loves(g(x), x)}}

8. Standardize variables apart: → Clausal normal form.

{{Animal(f(x)),Loves(g(x), x)}, {¬Loves(y, f(y)),Loves(g(y), y)}}
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Questionnaire

Example “Animals” (simplified): U = {o1, o2, o3}; LassieI = o1,
GarfieldI = o2, BelloI = o3; DogI = {o1, o3}, ChasesI = {(o1, o3), (o3, o2)}.

Question!

Which of these ϕ (1) have I |= ϕ, or (2) are satisfiable by choosing
a suitable interpretation of f?

(A): ∀x∃y[Dog(x)→
Chases(x, y)]

(C): ∀x[Dog(x)→
Chases(x, f(x))]

(B): ∃y∀x[Dog(x)→
Chases(x, y)]

(D): ∀x[Dog(x)→
Chases(x, f)]

→ (A): Yes, (1) because Bello chases Garfield and Lassie chases Bello. (B): No,
because Bello respectively Lassie chase different y. (C): Yes, (2) by choosing
f(o3) := o2 and f(o1) := o3 (cf. (A)). (D): No, because f has no argument (cf. (B)).

→ Note that (C) is a SNF for (A), and (D) is a SNF for (B). Note also that (D) is a
“flawed SNF” for (A) where we forgot to give f the argument x. (Compare slide 35)
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Summary

Predicate logic allows to explicitly speak about objects and their properties.
It is thus a more natural and compact representation language than
propositional logic; it also enables us to speak about infinite sets of objects.

Logic has thousands of years of history. A major current application in AI
is Semantic Technology.

First-order predicate logic (PL1) allows universal and existential
quantification over objects.

A PL1 interpretation consists of a universe U and a function I mapping
constant symbols/predicate symbols/function symbols to
elements/relations/functions on U .

In prenex normal form, all quantifiers are up front. In Skolem normal form,
additionally there are no existential quantifiers. In clausal normal form,
additionally the formula is in CNF.

Any PL1 formula can efficiently be brought into a satisfiability-equivalent
clausal normal form.
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Reading

Chapter 8: First-Order Logic, Sections 8.1 and 8.2 [Russell and Norvig
(2010)].

Content: A less formal account of what I cover in “Syntax” and
“Semantics”. Contains different examples, and complementary
explanations. Nice as additional background reading.

Sections 8.3 and 8.4 provide additional material on using PL1, and on
modeling in PL1, that I don’t cover in this lecture. Nice reading, not
required for exam.

Chapter 9: Inference in First-Order Logic, Section 9.5.1 [Russell and
Norvig (2010)].

Content: A very brief (2 pages) description of what I cover in “Normal
Forms”. Much less formal; I couldn’t find where (if at all) RN cover
transformation into prenex normal form. Can serve as additional reading,
can’t replace the lecture.
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