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The Problem

→ ”Adversarial search” = Game playing against an opponent.
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Why AI Game Playing?

Many good reasons:

Playing a game well clearly requires a form of “intelligence”.

Games capture a pure form of competition between opponents.

Games are abstract and precisely defined, thus very easy to
formalize.

→ Game playing is one of the oldest sub-areas of AI (ca. 1950).

→ The dream of a machine that plays Chess is, indeed, much older than
AI! (von Kempelen’s “Schachtürke” (1769), Torres y Quevedo’s “El
Ajedrecista” (1912))
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“Game” Playing? Which Games?

. . . sorry, we’re not gonna do football here.

Restrictions:

Game states discrete, number of game states finite.

Finite number of possible moves.

The game state is fully observable.

The outcome of each move is deterministic.

Two players: Max and Min.

Turn-taking: It’s each player’s turn alternatingly. Max begins.

Terminal game states have a utility u. Max tries to maximize u, Min
tries to minimize u.

In that sense, the utility for Min is the exact opposite of the utility
for Max (“zero-sum”).

There are no infinite runs of the game (no matter what moves are
chosen, a terminal state is reached after a finite number of steps).
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An Example Game

Game states: Positions of figures.

Moves: Given by rules.

Players: White (Max), Black (Min).

Terminal states: Checkmate.

Utility of terminal states, e.g.:

+100 if Black is checkmated.
0 if stalemate.
−100 if White is checkmated.
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“Game” Playing? Which Games Not?

. . . football.

Important types of games that we don’t tackle here:

Chance. (E.g., backgammon)

More than two players. (E.g., halma)

Hidden information. (E.g., most card games)

Simultaneous moves. (E.g., football)

Not zero-sum, i.e., outcomes may be beneficial (or detrimental) for
both players. (→ Game theory: Auctions, elections, economy,
politics, . . . )

→ Many of these more general game types can be handled by
similar/extended algorithms.
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(A Brief Note On) Formalization

Definition (Game State Space). A game state space is a 6-tuple
Θ = (S,A, T, I, ST , u) where:

S, A, T , I: States, actions, deterministic transition relation, initial
state. As in classical search problems, except:

S is the disjoint union of SMax, SMin, and ST .
A is the disjoint union of AMax and AMin.
For a ∈ AMax, if s

a−→ s′ then s ∈ SMax and s′ ∈ SMin ∪ ST .
For a ∈ AMin, if s

a−→ s′ then s ∈ SMin and s′ ∈ SMax ∪ ST .

ST is the set of terminal states.

u : ST 7→ R is the utility function.

Commonly used terminology: state=position, terminal state=end
state, action=move.

(A round of the game – one move Max, one move Min – is often referred to as
a “move”, and individual actions as “half-moves”. We don’t do that here.)
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Why Games are Hard to Solve
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Our Agenda for This Chapter

Minimax Search: How to compute an optimal strategy?

→ Minimax is the canonical (and easiest to understand) algorithm for
solving games, i.e., computing an optimal strategy.

Evaluation Functions: But what if we don’t have the time/memory to
solve the entire game?

→ Given limited time, the best we can do is look ahead as far as possible.
Evaluation functions tell us how to evaluate the leaf states at the cut-off.

Alpha-Beta Search: How to prune unnecessary parts of the tree?

→ An essential improvement over Minimax.

Monte-Carlo Tree Search (MCTS): An alternative form of game search,
based on sampling rather than exhaustive enumeration.

→ The main alternative to Alpha-Beta Search.

→ Alpha-Beta = state of the art in Chess, MCTS = state of the art in Go.
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Questionnaire

Question!

When was the first game-playing computer built?

(A): 1941

(C): 1958

(B): 1950

(D): 1965

Question!

Does the video game industry attempt to make the computer
opponents as intelligent as possible?

(A): Yes (B): No
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“Minimax”?

→ We want to compute an optimal move for player “Max”. In other
words: “We are Max, and our opponent is Min.”

Remember:

Max attempts to maximize the utility u(s) of the terminal state that
will be reached during play.

Min attempts to minimize u(s).

So what?

The computation alternates between minimization and maximization
=⇒ hence “Minimax”.
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Example Tic-Tac-Toe

Game tree, current player marked on the left.

Last row: terminal positions with their utility.
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Minimax: Outline

We max, we min, we max, we min . . .

1 Depth-first search in game tree, with Max in the root.

2 Apply utility function to terminal positions.
3 Bottom-up for each inner node n in the tree, compute the utility
u(n) of n as follows:

If it’s Max’s turn: Set u(n) to the maximum of the utilities of n’s
successor nodes.
If it’s Min’s turn: Set u(n) to the minimum of the utilities of n’s
successor nodes.

4 Selecting a move for Max at the root: Choose one move that leads
to a successor node with maximal utility.
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Minimax: Example

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Blue numbers: Utility function u applied to terminal positions.

Red numbers: Utilities of inner nodes, as computed by Minimax.
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Minimax: Pseudo-Code

Input: State s ∈ SMax, in which Max is to move.

function Minimax-Decision(s) returns an action
v ← Max-Value(s)
return an action a ∈ Actions(s) yielding value v

function Max-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← −∞
for each a ∈ Actions(s) do

v ← max(v,Min-Value(ChildState(s, a)))
return v

function Min-Value(s) returns a utility value
if Terminal-Test(s) then return u(s)
v ← +∞
for each a ∈ Actions(s) do

v ← min(v,Max-Value(ChildState(s, a)))
return v
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Minimax: Example, Now in Detail
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Minimax, Pro and Contra

Pro:

Minimax is the simplest possible (reasonable) game search algorithm.

If any of you sat down, prior to this lecture, to implement a
Tic-Tac-Toe player, chances are you invented this in the process (or
looked it up on Wikipedia).

Returns an optimal action, assuming perfect opponent play.

Contra: Completely infeasible (search tree way too large).

Remedies:

Limit search depth, apply evaluation function to the cut-off states.

Use alpha-beta pruning to reduce search.

Don’t search exhaustively; sample instead: MCTS.
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Questionnaire

Tic Tac Toe.

Max = x, Min = o.

Max wins: u = 100; Min wins: u = −100;
stalemate: u = 0.

Question!

What’s the Minimax value for the state shown above? (Note:
Max to move)

(A): 100 (B): −100

Question!

What’s the Minimax value for the initial game state?

(A): 100 (B): −100
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Evaluation Functions

Problem: Minimax game tree too big.

Solution: Impose a search depth limit (“horizon”) d, and apply an
evaluation function to the non-terminal cut-off states.

An evaluation function f maps game states to numbers:

f(s) is an estimate of the actual value of s (as would be computed
by unlimited-depth Minimax for s).
→ If cut-off state is terminal: Use actual utility u instead of f .

Analogy to heuristic functions (cf. Chapter 4): We want f to be
both (a) accurate and (b) fast.

Another analogy: (a) and (b) are in contradiction . . . need to
trade-off accuracy against overhead.

→ Most games (e.g. Chess): f inaccurate but very fast. AlphaGo:
f accurate but slow.
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Our Example, Revisited: Minimax With Depth Limit d = 2

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Blue: Evaluation function f , applied to the cut-off states at d = 2.

Red: Utilities of inner nodes, as computed by Minimax using d, f .
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Example Chess

Evaluation function in Chess:
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Linear Evaluation Functions, Search Depth

Fast simple f : weighted linear function

w1f1 + w2f2 + · · ·+ wnfn

where the wi are the weights, and the fi are the features.

How to obtain such functions?

Weights wi can be learned automatically.

The features fi have to be designed by human experts.

And how deeply to search?

Iterative deepening until time for move is up.

Better: quiescence search, dynamically adapt depth limit, search
deeper in “unquiet” positions (e.g. Chess piece exchange situations).
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Questionnaire
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Questionnaire, ctd.

Tic-Tac-Toe. Max = x, Min = o.

Evaluation function f1(s): Number of rows,
columns, and diagonals that contain AT
LEAST ONE “x”.

(d: depth limit; I: initial state)

Question!

With d = 3 i.e. considering the moves Max-Min-Max, and using f1,
which moves may Minimax choose for Max in the initial state I?

(A): Middle. (B): Corner.
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Questionnaire, ctd.

Tic-Tac-Toe. Max = x, Min = o.

Evaluation function f2(s): Number of rows,
columns, and diagonals that contain AT
LEAST TWO “x”.

(d: depth limit; I: initial state)

Question!

With d = 3 i.e. considering the moves Max-Min-Max, and using f2,
which moves may Minimax choose for Max in the initial state I?

(A): Middle. (B): Corner.
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Alpha Pruning: Idea

Max (A)

Max
value: m

Min
value: n

Min (B)

Say n > m.
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Alpha Pruning: The Idea in Our Example

Question:

Can we save some
work here?

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2
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Alpha Pruning
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Alpha-Beta Pruning

Reminder:

What is α: For each search node n, the highest Max-node utility
that search has found already on its path to n.

How to use α: In a Min node n, if one of the successors already
has utility ≤ α, then stop considering n. (Pruning out its remaining
successors.)

We can use a dual method for Min:

What is β: For each search node n, the lowest Min-node utility
that search has found already on its path to n.

How to use β: In a Max node n, if one of the successors already
has utility ≥ β, then stop considering n. (Pruning out its remaining
successors.)

. . . and of course we can use both together.
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Alpha-Beta Search: Pseudo-Code

function Alpha-Beta-Search(s) returns an action
v ← Max-Value(s,−∞,+∞)
return an action a ∈ Actions(s) yielding value v

function Max-Value(s, α, β) returns a utility value
if Terminal-Test(s) then return u(s)
v ← −∞
for each a ∈ Actions(s) do
v ← max(v,Min-Value(ChildState(s, a), α, β))
α ← max(α, v)
if v ≥ β then return v /* Here: v ≥ β ⇔ α ≥ β */

return v

function Min-Value(s, α, β) returns a utility value
if Terminal-Test(s) then return u(s)
v ← +∞
for each a ∈ Actions(s) do
v ← min(v,Max-Value(ChildState(s, a), α, β))
β ← min(β, v)
if v ≤ α then return v /* Here: v ≤ α⇔ α ≥ β */

return v

= Minimax (slide 18) + α/β book-keeping and pruning.
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Alpha-Beta Search: Example
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Alpha-Beta Search: Modified Example
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How Much Pruning Do We Get?

→ Choosing best moves first yields most pruning in alpha-beta search.

With branching factor b and depth limit d:

Minimax: bd nodes.

Best case: Best moves first ⇒ bd/2 nodes! Double the lookahead!

Practice: Often possible to get close to best case.

Example Chess:

Move ordering: Try captures first, then threats, then forward moves,
then backward moves.

Double lookahead: E.g. with time for 109 nodes, Minimax 3 rounds
(white move, black move), alpha-beta 6 rounds.
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Computer Chess State of the Art
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Questionnaire

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

2 5 14

Question!

How many nodes does alpha-beta prune out here?

(A): 0

(C): 4

(B): 2

(D): 6
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And now . . .

AlphaGo = Monte-Carlo tree search + neural networks
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Limitations of Alpha Beta Search

Alpha Beta search is a strong algorithm but it has two issues (e.g. in Go):
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Monte-Carlo Sampling

→ When deciding which action to take on game state s:

Imagine that each of the available actions is a slot machine that on
average gives you an unknown reward:

Explotation: play in the machine that returns the best reward

Exploration: play machines that have not been tried a lot yet

Upper Confidence Bound (UCB): formula that automatically balances
exploration and exploitation to maximize total gains
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Monte-Carlo Sampling: Illustration

Koehler and Torralba Artificial Intelligence Chapter 11: Adversarial Search 45/54



Introduction Minimax Search Evaluation Fns Alpha-Beta Search MCTS Conclusion References

Monte-Carlo Tree Search

→ When deciding which action to take on game state s:

Monte-Carlo Sampling: Evaluate actions through sampling.

while time not up do
select a transition s

a−→ s′

run a random sample from s′ until terminal state t
update, for a, average u(t) and #expansions

return an a for s with maximal average u(t)

Monte-Carlo Tree Search: Maintain a search tree T .
while time not up do

apply actions within T up to a state s′ and s′
a′
−→ s′′ s.t. s′′ 6∈ T

run random sample from s′′ until terminal state t
add s′′ to T
update, from a′ up to root, averages u(t) and #expansions

return an a for s with maximal average u(t)
When executing a, keep the part of T below a

→ Compared to alpha-beta search: no exhaustive enumeration. Pro: runtime &
memory. Contra: need good guidance how to “select” and “sample”.
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Monte-Carlo Tree Search: Illustration
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How to Guide the Search?

How to “sample”? What exactly is “random”?

Exploitation: Prefer moves that have high average already
(interesting regions of state space).

Exploration: Prefer moves that have not been tried a lot yet (don’t
overlook other, possibly better, options).

→ Classical formulation: balance exploitation vs. exploration.

UCT:

“Upper Confidence bounds applied to Trees” [Kocsis and Szepesvári
(2006)]. Inspired by Multi-Armed Bandit (as in: Casino) problems.

Basically a formula defining the balance. Very popular (buzzword).

Recent critics (e.g. [Feldman and Domshlak (2014)]):
“Exploitation” in search is very different from the Casino, as the
“accumulated rewards” are fictitious (we’re merely thinking about
the game, not actually playing and winning/losing all the time).
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Alpha-beta versus UCT

Illustration from Ramanujan and Selman (2011) that visualizes the
search space of Alpha Beta and three variants of UCT (more exploration
or exploitation):

Alpha Beta UCT (from more exploitation to more exploration)
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AlphaGo: Overview

Neural Networks:

Policy networks: Given a state s, output a probability distibution
over the actions applicable in s.

Value networks: Given a state s, outpout a number estimating the
game value of s.

Combination with MCTS:

Policy networks bias the action choices within the MCTS tree (and
hence the leaf-state selection), and bias the random samples.

Value networks are an additional source of state values in the MCTS
tree, along with the random samples.

→ And now in a little more detail:
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Summary

Games (2-player turn-taking zero-sum discrete and finite games) can be
understood as a simple extension of classical search problems.

Each player tries to reach a terminal state with the best possible utility
(maximal vs. minimal).

Minimax searches the game depth-first, max’ing and min’ing at the
respective turns of each player. It yields perfect play, but takes time O(bd)
where b is the branching factor and d the search depth.

Except in trivial games (Tic-Tac-Toe), Minimax needs a depth limit and
apply an evaluation function to estimate the value of the cut-off states.

Alpha-beta search remembers the best values achieved for each player
elsewhere in the tree already, and prunes out sub-trees that won’t be
reached in the game.

Monte-Carlo tree search (MCTS) samples game branches, and averages
the findings. AlphaGo controls this using neural networks: evaluation
function (“value network”), and action filter (“policy network”).
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Reading

Chapter 5: Adversarial Search, Sections 5.1 – 5.4 [Russell and
Norvig (2010)].

Content: Section 5.1 corresponds to my “Introduction”, Section 5.2
corresponds to my “Minimax Search”, Section 5.3 corresponds to
my “Alpha-Beta Search”. I have tried to add some additional
clarifying illustrations. RN gives many complementary explanations,
nice as additional background reading.

Section 5.4 corresponds to my “Evaluation Functions”, but discusses
additional aspects relating to narrowing the search and look-up from
opening/termination databases. Nice as additional background
reading.

I suppose a discussion of MCTS and AlphaGo will be added to the
next edition . . .
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