
Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Artificial Intelligence
13. Planning, Part I: Framework

How to Describe Arbitrary Search Problems

Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Prof. Hoffmann for slide sources

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 1/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Agenda

1 Introduction

2 The History of Planning

3 The STRIPS Planning Formalism

4 The PDDL Language

5 Why Complexity Analysis?

6 Planning Complexity

7 Conclusion

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 2/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reminder: Classical Search Problems (Chapters 4 and 5)

States: Card positions (position Jspades=Qhearts).

Actions: Card moves (move Jspades Qhearts freecell4).

Initial state: Start configuration.

Goal states: All cards “home”.

Solution: Card moves solving this game.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 4/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Planning

Ambition:

Write one program that can solve all classical search problems.

Reminder: (Chapter 4)

The blackbox description of a problem Π is an API (a
programming interface) providing functionality allowing to construct
the state space: InitialState(), GoalTest(s), . . .

→ ”Specifying the problem” = programming the API.

The declarative description of Π comes in a problem description
language. This allows to implement the API, and much more.

→ ”Specifying the problem” = writing a problem description.

→ Here, “problem description language” = planning language.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 5/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

“Planning Language”?

How does a planning language describe a problem?

A logical description of the possible states (vs. Blackbox: data
structures). E.g.: predicate Eq(., .).

A logical description of the initial state I (vs. data structures).
E.g.: Eq(x, 1).

A logical description of the goal condition G (vs. a goal-test
function). E.g.: Eq(x, 2).

A logical description of the set A of actions in terms of
preconditions and effects (vs. functions returning applicable actions
and successor states).
E.g.: “increment x: pre Eq(x, 1), eff Eq(x, 2) ∧ ¬Eq(x, 1)”.

→ Solution (plan) = sequence of actions from A, transforming I into a
state that satisfies G. E.g.: “increment x”.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 6/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

“Planning Language”?

Disclaimer:

→ Planning languages go way beyond classical search problems. There
are variants for inaccessible, stochastic, dynamic, continuous, and
multi-agent settings.

We focus on classical search for simplicity (combined with practical
relevance).

For a comprehensive overview, see [Ghallab et al. (2004)].

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 6/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Application: Natural Language Generation

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white

{sleep(e,r1)}

{white(r1)}{rabbit(r1)}

Input: Tree-adjoining grammar, intended meaning.

Output: Sentence expressing that meaning.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 7/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Application: Business Process Templates at SAP

Create CQ

Check CQ

Consistency

Check CQ

Completeness

Check CQ

Approval

Status

Decide CQ

Approval

Submit CQ

Mark CQ as

Accepted

Create Follow-

Up for CQ

Archive CQ

Approval:

Necessary

Approval:

not

Necessary

Input: SAP-scale model of behavior of activities on Business
Objects, process endpoint.

Output: Process template leading to this point.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 7/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Application: Automatic Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Input: Network configuration, location of sensible data.

Output: Sequence of exploits giving access to that data.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 7/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Planning!

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Planning Domain Definition Language (PDDL) 7→ Planning System

Create CQ

Check CQ

Consistency

Check CQ

Completeness

Check CQ

Approval

Status

Decide CQ

Approval

Submit CQ

Mark CQ as

Accepted

Create Follow-

Up for CQ

Archive CQ

Approval:

Necessary

Approval:

not

Necessary

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 7/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reminder: General Problem Solving, Pros and Cons

Powerful: In some applications, generality is absolutely necessary.
(E.g. SAP)

Quick: Rapid prototyping: 10s lines of problem description vs.
1000s lines of C++ code. (E.g. language generation)

Flexible: Adapt/maintain the description. (E.g. network security)

Intelligent: Determines automatically how to solve a complex
problem effectively! (The ultimate goal, no?!)

Efficiency loss: Without any domain-specific knowledge about
Chess, you don’t beat Kasparov . . .

→ Trade-off between “automatic and general” vs. “manualwork but
effective”.

How to make fully automatic algorithms effective?

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 8/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

ps. “Making Fully Automatic Algorithms Effective”

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

blocks states

1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states

9 4596553
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

→ State spaces typically are huge even for simple problems.

→ In other words: Even solving “simple problems” automatically (without help
from a human) requires a form of intelligence. With blind search, even the
largest super-computer in the world won’t scale beyond 20 blocks!

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 9/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Algorithmic Problems in Planning

Satisficing Planning

Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.

Optimal Planning

Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

→ The techniques successful for either one of these are almost disjoint.
And satisficing planning is much more effective in practice.

→ Programs solving these problems are called (optimal) planners,
planning systems, or planning tools.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 10/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Our Agenda for This Topic

→ Our treatment of the topic “Planning” consists of Chapters 13 and 14.

This Chapter: Background, planning languages, complexity.

→ Sets up the framework. Computational complexity is essential to
distinguish different algorithmic problems, and for the design of
heuristic functions (see next).

Chapter 14: How to automatically generate a heuristic function,
given planning language input?

→ Focussing on heuristic search as the solution method, this is the
main question that needs to be answered.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 11/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Our Agenda for This Chapter

The History of Planning: How did this come about?

→ Gives you some background, and motivates our choice to focus on
heuristic search.

The STRIPS Planning Formalism: Which concrete planning formalism
will we be using?

→ Lays the framework we’ll be looking at.

The PDDL Language: What do the input files for off-the-shelf planning
software look like?

→ So you can actually play around with such software. (Exercises!)

Why Complexity Analysis? Why do we bother?

→ I’ll try to convince you that this is USEFUL.

Planning Complexity: How complex is planning?

→ The price of generality is complexity, and here’s what that “price” is,
exactly.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 12/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

In the Beginning . . .

. . . Man invented Robots:

“Planning” as in “the making of plans by an autonomous robot”.

In a little more detail:

Newell and Simon (1963) introduced general problem solving.

. . . not much happened (well not much we still speak of today) . . .

Stanford Research Institute developed a robot named “Shakey”.

They needed a “planning” component taking decisions.

They took inspiration from general problem solving and theorem
proving, and called the resulting algorithm “STRIPS”.

And then:

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 14/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

History of Planning Algorithms

Compilation into Logics/Theorem Proving:

Popular when: Stone Age – 1990.

Approach: From planning task description, generate PL1 formula ϕ
that is satisfiable iff there exists a plan; use a theorem prover on ϕ.

Keywords/cites: Situation calculus, frame problem, . . .

Partial-Order Planning:

Popular when: 1990 – 1995.

Approach: Starting at goal, extend partially ordered set of actions
by inserting achievers for open sub-goals, or by adding ordering
constraints to avoid conflicts.

Keywords/cites: UCPOP [Penberthy and Weld (1992)], causal
links, flaw-selection strategies, . . .

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 15/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

History of Planning Algorithms, ctd.

GraphPlan:

Popular when: 1995 – 2000.
Approach: In a forward phase, build a layered “planning graph”
whose “time steps” capture which pairs of actions can achieve
which pairs of facts; in a backward phase, search this graph starting
at goals and excluding options proved to not be feasible.
Keywords/cites: [Blum and Furst (1995, 1997); Koehler et al.
(1997)], action/fact mutexes, step-optimal plans, . . .

Planning as SAT:

Popular when: 1996 – today.
Approach: From planning task description, generate propositional
CNF formula ϕk that is satisfiable iff there exists a plan with k
steps; use a SAT solver on ϕk, for different values of k.
Keywords/cites: [Kautz and Selman (1992, 1996); Rintanen et al.
(2006); Rintanen (2010)], SAT encoding schemes, BlackBox, . . .

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 16/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

History of Planning Algorithms, ctd.

Planning as Heuristic Search:

Popular when: 1999 – today.

Approach: Devise a method R to simplify (“relax”) any planning
task Π; given Π, solve R(Π) to generate a heuristic function h for
informed search.

Keywords/cites: [Bonet and Geffner (1999); Haslum and Geffner
(2000); Bonet and Geffner (2001); Hoffmann and Nebel (2001);
Edelkamp (2001); Gerevini et al. (2003); Helmert (2006); Helmert
et al. (2007); Helmert and Geffner (2008); Karpas and Domshlak
(2009); Helmert and Domshlak (2009); Richter and Westphal
(2010); Nissim et al. (2011); Katz et al. (2012); Keyder et al.
(2012); Katz et al. (2013); Domshlak et al. (2015)], critical path
heuristics, ignoring delete lists, relaxed plans, landmark heuristics,
abstractions, partial delete relaxation, . . .

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 17/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC
organizers. Give awards to the most effective planners.”

1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018

PDDL [McDermott et al. (1998); Fox and Long (2003); Hoffmann
and Edelkamp (2005); Gerevini et al. (2009)]

≈ 50 domains, � 1000 instances, 74 (!!) planners in 2011

Optimal track vs. satisficing track

Various others: uncertainty, learning, . . .

http://ipc.icaps-conference.org/

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 18/73

http://ipc.icaps-conference.org/

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC 2000: Competitors

BlackBox: Compilation to SAT [Kautz and Selman (1999)].

HSP: Heuristic search [Bonet and Geffner (2001)].

IPP: GraphPlan variant [Koehler et al. (1997)].

STAN: Heuristic search.

GRT: Heuristic search.

Mips: Heuristic search.

FF: Heuristic search [Hoffmann and Nebel (2001)].

... (13 altogether)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 19/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC 2000: Benchmark Domains

Blocksworld: Move around blocks on a table (yeah, I know).

Freecell: The card game.

Logistics: Transport packages using trucks and airplanes.

Miconic-ADL: A complex elevator-control problem (see slide 61).

Schedule: A simple scheduling problem where objects must be
processed with various machines.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 20/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC’00 Results, Fully Automatic Track

Logistics

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 21/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC’00 Results, Fully Automatic Track

Blocksworld

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 21/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC’00 Results, Fully Automatic Track

Freecell

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 21/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC’00 Results, Fully Automatic Track

Miconic

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 21/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

IPC’00 Results, Fully Automatic Track

Schedule

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 21/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

And Since Then?

IPC 2000: Winner FF, heuristic search.

IPC 2002: Winner LPG, heuristic search.

IPC 2004: Winner satisficing SGPlan, heuristic search; optimal
SATPLAN, compilation to SAT.

IPC 2006: Winner satisficing SGPlan, heuristic search; optimal
SATPLAN, compilation to SAT.

IPC 2008: Winner satisficing LAMA, heuristic search; optimal Gamer,
symbolic search.

IPC 2011: Winner satisficing LAMA, heuristic search; optimal
Fast-Downward, heuristic search.

IPC 2014: Winner satisficing Mercury, heuristic search; optimal Symba,
symbolic search.

→ For the rest of this chapter, we focus on planning as heuristic search.

→ This is a VERY short summary of the history of the IPC! There are
many different categories, and many different awards.
Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 22/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Questionnaire

Question!

If planners x, y both compete in IPC’YY, and x wins, is x “better
than” y?

(A): Yes. (B): No.

→ Yes, but only on the IPC’YY benchmarks, and only according to the
criteria used for determining a “winner”! On other domains and/or
according to other criteria, you may well be better off with the “loser”.

→ It’s complicated, over-simplification is dangerous. (But, of course,
nevertheless is being done all the time).

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 23/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

“STRIPS” Planning

STRIPS = Stanford Research Institute Problem Solver.

STRIPS is the simplest possible (reasonably expressive) logics-based
planning language.

STRIPS has only Boolean variables: propositional logic atoms.

Its preconditions/effects/goals are as canonical as imaginable:

Preconditions, goals: conjunctions of positive atoms.
Effects: conjunctions of literals (positive or negated atoms).

We use the common special-case notation for this simple formalism.

I’ll outline some extensions beyond STRIPS later on, when we
discuss PDDL.

→ Historical note: STRIPS [Fikes and Nilsson (1971)] was originally a
planner (cf. Shakey), whose language actually wasn’t quite that simple.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 25/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

STRIPS Planning: Syntax

Definition (STRIPS Planning Task). A STRIPS planning task, short
planning task, is a 4-tuple Π = (P,A, I,G) where:

P is a finite set of facts (aka propositions).

A is a finite set of actions; each a ∈ A is a triple
a = (prea, adda, dela) of subsets of P referred to as the action’s
precondition, add list, and delete list respectively; we require that
adda ∩ dela = ∅.
I ⊆ P is the initial state.

G ⊆ P is the goal.

We will often give each action a ∈ A a name (a string), and identify a
with that name.

Note: We assume, for simplicity, that every action has cost 1. (Unit
costs, cf. Chapter 4.)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 26/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

“TSP” in Australia

[→ Strictly speaking, this is not actually a TSP problem instance; simplified/adapted
for illustration.]

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 27/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

STRIPS Encoding of “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.

Initial state I: {at(Sydney), visited(Sydney)}.

Goal G:
{at(Sydney)} ∪ {visited(x) | x ∈ {Sydney,Adelaide,Brisbane,Perth,Darwin}}.

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea: {at(x)}.
Add list adda: {at(y), visited(y)}.
Delete list dela: {at(x)}.

Plan: 〈drive(Sydney,Brisbane), drive(Brisbane,Sydney), drive(Sydney,Adelaide),
drive(Adelaide,Perth), drive(Perth,Adelaide), drive(Adelaide,Darwin),
drive(Darwin,Adelaide), drive(Adelaide,Sydney)〉.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 28/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

STRIPS Planning: Semantics

Definition (STRIPS State Space). Let Π = (P,A, c, I,G) be a STRIPS
planning task. The state space of Π is ΘΠ = (S,A, T, I, SG) where:

The states (also world states) S = 2P are the subsets of P .

A is Π’s action set.

The transitions are T = {s a−→ s′ | prea ⊆ s, s′ = appl(s, a)}.
If prea ⊆ s, then a is applicable in s and appl(s, a) := (s ∪ adda) \ dela.
If prea 6⊆ s, then appl(s, a) is undefined.

I is Π’s initial state.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

An (optimal) plan for s ∈ S is an (optimal) solution for s in ΘΠ, i.e., a path
from s to some s′ ∈ SG. A solution for I is called a plan for Π. Π is solvable if
a plan for Π exists.

For ~a = 〈a1, . . . , an〉, appl(s,~a) := appl(. . . appl(appl(s, a1), a2) . . . , an) if
each ai is applicable in the respective state; else, appl(s,~a) is undefined.

Note: This is exactly like the state spaces of Chapter 4, without a cost
function. Solutions are defined as before (paths from I to a state in SG).

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 29/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

STRIPS Encoding of Simplified “TSP”

Facts P : {at(x), visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}.

Initial state I: {at(Sydney), visited(Sydney)}.

Goal G: {visited(x) | x ∈ {Sydney,Adelaide,Brisbane}}. (Note: no “at(Sydney)”.)

Actions a ∈ A: drive(x, y) where x, y have a road.
Precondition prea: {at(x)}.
Add list adda: {at(y), visited(y)}.
Delete list dela: {at(x)}.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 30/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

STRIPS Encoding of Simplified “TSP”: State Space

drive A
d Sy

dr
iv

e
B
r S

y

drive Sy Ad

drive Sy Brdrive Ad Sy

drive Br Sy

dr
iv

e
Sy

B
r

drive Sy A
d

{at(Sy), v(Sy)}

{at(Br), v(Sy), v(Br)}

{at(Ad), v(Sy), v(Ad)}

{at(Sy), v(Sy), v(Br)}

{at(Sy), v(Sy), v(Ad)}

{at(Ad), v(Sy), v(Br), v(Ad)}

{at(Br), v(Sy), v(Ad), v(Br)}

{at(Sy), v(Sy), v(Ad), v(Br)}

→ Is this actually the state space? No, only the reachable part. E.g., ΘΠ

also includes the states {v(Sy)} and {at(Sy), at(Br)}.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 31/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

(Oh no it’s) The Blocksworld

Initial State Goal State

D

B

A

C

E

D

CBAE

Facts: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

Initial state: {onTable(E), clear(E), . . . , onTable(C), on(D,C),
clear(D), armEmpty()}.
Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

stack(x, y)? pre : {holding(x), clear(y)}
add : {on(x, y), armEmpty()}
del : {holding(x), clear(y)}.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 32/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Questionnaire

Question!

Which are correct encodings (ones that are part of some correct
overall model) of the STRIPS Blocksworld pickup(x) action
schema?
(A): ({onTable(x), clear(x),

armEmpty()},
{holding(x)},
{onTable(x)}).

(C): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty(), clear(x)}).

(B): ({onTable(x), clear(x),
armEmpty()},
{holding(x)},
{armEmpty()}).

(D): ({onTable(x), clear(x),
armEmpty()},
{holding(x)}, {onTable(x),
armEmpty()}).

→ (A): No, must delete armEmpty(). (B): No, must delete onTable(x). (C), (D):
Both yes: We can, but don’t have to, encode the single-arm Blocksworld so that the
block currently in the hand is not clear. (For (C), stack(x, y) and putdown(x) need to
add clear(x), so the encoding on the previous slide does not work.)
Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 33/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL History

Planning Domain Description Language:

A description language for planning in the STRIPS formalism and
various extensions.

Used in the International Planning Competition (IPC).

1998: PDDL [McDermott et al. (1998)].

2000: “PDDL subset for the 2000 competition” [Bacchus (2000)].

2002: PDDL2.1, Levels 1-3 [Fox and Long (2003)].

2004: PDDL2.2 [Hoffmann and Edelkamp (2005)].

2006: PDDL3 [Gerevini et al. (2009)].

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 35/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL Quick Facts

PDDL is not a propositional language:

Representation is lifted, using object variables to be instantiated
from a finite set of objects. (Similar to predicate logic)

Action schemas parameterized by objects.

Predicates to be instantiated with objects.

A PDDL planning task comes in two pieces:

The domain file and the problem file.

The problem file gives the objects, the initial state, and the goal
state.

The domain file gives the predicates and the operators; each
benchmark domain has one domain file.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 36/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The Blocksworld in PDDL: Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on-table ?x) (arm-empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm-empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x)))
)
. . .

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 37/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The Blocksworld in PDDL: Problem File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw-abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on-table a) (clear a)

(on-table b) (clear b)
(on-table e) (clear e)
(on-table c) (on d c) (clear d)
(arm-empty))

(:goal (and (on e c) (on c a) (on b d))))

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 38/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL in 1998

STRIPS + ADL (Action Description Language):

Arbitrary first-order logic formulas in action preconditions and the
goal.

Conditional effects, i.e., effects that occur only if their separate
effect condition holds.

ADL is a real headache to implement:

The systems that do handle ADL compile it down to simpler formats
[Gazen and Knoblock (1997)]. (Typically, STRIPS with conditional
effects.)

Example FF: 7000 C lines for compilation, 2000 lines core planner.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 39/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Miconic-ADL “Stop” Action Schema in PDDL

(:action stop
:parameters (?f - floor)
:precondition (and (lift-at ?f)

(imply
(exists
(?p - conflict-A)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q - conflict-B)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))
(imply (exists
(?p - conflict-B)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q - conflict-A)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))
(imply
(exists
(?p - never-alone)
(or (and (origin ?p ?f)

(not (served ?p)))
(and (boarded ?p)

(not (destin ?p ?f)))))
(exists
(?q - attendant)
(or (and (boarded ?q)

(not (destin ?q ?f)))
(and (not (served ?q))

(origin ?q ?f)))))
(forall
(?p - going-nonstop)
(imply (boarded ?p) (destin ?p ?f)))
(or (forall

(?p - vip) (served ?p))
(exists

(?p - vip)
(or (origin ?p ?f) (destin ?p ?f))))

(forall
(?p - passenger)
(imply
(no-access ?p ?f) (not (boarded ?p))))))

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 40/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL in 2000

Fahiem Bacchus selected a subset of the ADL subset of McDermott’s
PDDL for the 2000 competition.

(Actually, he first designed a whole new language all of his own, but the
IPC’00 organizing committee didn’t like it.)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 41/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL in 2002

Maria Fox and Derek Long promoted numeric and temporal planning:

PDDL 2.1 level 1: Bacchus’s PDDL.

PDDL 2.1 level 2: Level 1 extended with numeric state variables.
Comparisons between numeric expressions are allowed as logical
atoms (“fuel(v) ≥ dist(x, y) ∗ consumption(v)”). Effects can
assign the value of an expression to a numeric variable
(“fuel(v) := fuel(v)− dist(x, y) ∗ consumption(v)”).

PDDL 2.1 level 3: Level 2 extended with action durations. Actions
take an amount of time given by the value of a numeric expression
(“dist(x, y)/speed(v)”). Conditions and effects are evaluated at
either the start or the end of the action, and several actions can be
executed in parallel.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 42/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

PDDL After 2002

For IPC’04, Stefan Edelkamp and I deemed PDDL2.1 to be challenging
enough, so made only two small language extensions for PDDL 2.2:
Derived Predicates (e.g., flow of current in an electricity network) and
Timed Initial Literals (e.g., sunrise and sunset, shop closing times).

Gerevini&Long thought that PDDL2.2 is still not enough, and extended
it with various complex notions of soft goals and preferences to obtain
PDDL 3.

→ The good news (from my perspective): Since 2008, PDDL has
remained largely stable.

→ Having said that: There’s variants for partial observability, stochastic
effects, uncertain initial states, multi-agents, . . .

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 43/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Questionnaire

Question!

What is PDDL good for?

(A): Nothing.

(C): Those AI planning guys.

(B): Free beer.

(D): Being lazy at work.

→ (A): Nah, it’s definitely good for something (see remaining answers).

→ (B): Generally, no. Sometimes, yes: PDDL is needed for the IPC, and if you
win the IPC you get price money (= free beer).

→ (C): Yep. (When I started in this area, every system had its own language, so
running experiments felt a lot like “Lost in Translation”.)

→ (D): Yep. You can be a busy bee, programming a solver yourself. Or you can
be lazy and just write the PDDL. (I think I said that before . . .)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 44/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Why Complexity Analysis?

Why? Why?

Two very good reasons:

1 It saves you from spending lots of time trying to invent algorithms
that do not exist.

2 Killer app in planning: tractable fragments for heuristic functions.

→ Identify special cases that can be solved in polynomial time.

→ Relax the input into the special case to obtain a heuristic
function! (→ Chapter 14)

→ I’ll next remind you of the basic terms, then I’ll illustrate both with an
example. Afterwards we’ll have a brief look at the complexity of the main
decision problems in STRIPS planning.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 46/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reminder (?): NP and PSPACE

Def Turing machine: Works on a tape consisting of tape cells, across which its
R/W head moves. The machine has internal states. There are transition rules
specifying, given the current cell content and internal state, what the
subsequent internal state will be, how what the R/W head does (write a symbol
and/or move). Some internal states are accepting.

Def NP: Decision problems for which there exists a non-deterministic Turing
machine that runs in time polynomial in the size of its input. Accepts if at least
one of the possible runs accepts.

Def PSPACE: Decision problems for which there exists a deterministic Turing
machine that runs in space polynomial in the size of its input.

Relation: Non-deterministic polynomial space can be simulated in deterministic
polynomial space. Thus PSPACE = NPSPACE, and hence (trivially) NP ⊆
PSPACE. It is commonly believed that NP 6⊇ PSPACE (similar to P ⊆ NP).

→ For comprehensive details, please see a text book. My personal favorite is
[Garey and Johnson (1979)]. (On the first 3 pages, they explain why knowing
about NP-hardness will help you talk to your future boss.)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 47/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The “Only-Adds” Relaxation

Example: “Logistics”

Facts P : {truck(x) | x ∈ {A,B,C,D}}∪
{pack(x) | x ∈ {A,B,C,D, T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)

drive(x, y), where x, y have a road:
“truck(x)⇒ truck(y),¬truck(x)”.
load(x): “truck(x), pack(x)⇒ pack(T),¬pack(x)”.
unload(x): “truck(x), pack(T)⇒ pack(x),¬pack(T)”.

Only-Adds Relaxation: Drop the preconditions and deletes.

“drive(x, y): ⇒ truck(y)”; “load(x): ⇒ pack(T)”; “unload(x): ⇒ pack(x)”.

→ Say we want to use this for generating a heuristic function.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 48/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Solving Only-Adds STRIPS Tasks

Our problem:

Given STRIPS task Π = (P,A, I,G).

Find action sequence ~a leading from I to a state that contains G,
when pretending that preconditions and deletes are empty.

Solution 1: (simplest possible approach)

~a := 〈〉
while G 6= ∅ do

select a ∈ A
G := G \ adda

~a := ~a ◦ 〈a〉; A := A \ {a}
endwhile
return h := |~a|

→ Is this h admissible? No. Admissibility is only guaranteed if we find a
shortest possible ~a; else, ~a might be longer than a plan for Π itself.
Selecting an arbitrary action each time, ~a may be longer than needed.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 49/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Solving Only-Adds STRIPS Tasks, ctd.

So, what about this? ~a := 〈〉
while G 6= ∅ do

select a ∈ A s.t. |adda| is maximal
G := G \ adda

~a := ~a ◦ 〈a〉; A := A \ {a}
endwhile
return h := |~a|

→ h admissible? No, large adda doesn’t help if the intersection with G is small.

And this? ~a := 〈〉
while G 6= ∅ do

select a ∈ A s.t. |adda ∩G| is maximal
G := G \ adda

~a := ~a ◦ 〈a〉; A := A \ {a}
endwhile
return h := |~a|

→ h admissible? Still no. Example: G = {A,B,C,D,E, F}; adda1
= {A,B};

adda2
= {C,D}; adda3

= {E,F}; adda4
= {A,C,E}.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 50/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Solving Only-Adds STRIPS Tasks, ctd.

From [Garey and Johnson (1979)]:

So what?

Given STRIPS task Π = (P,A, I,G).
Find optimal ~a leading from I to a state that contains G, when
pretending that preconditions and deletes are empty.

→ ~a leads to G ⇔
⋃

a∈~a adda ⊇ G ⇔ the add lists in ~a cover G. QED.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 51/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Questionnaire

Assume: In 3 years from now, you have finished your studies and are working in
your first industry job. Your boss Mr. X gives you a problem and says “Solve
It!”. By which he means, “write a program that solves it efficiently”.

Question!

How could knowing about NP-hardness help?

→ Assume further that, after trying in vain for 4 weeks, you got the next
meeting with Mr. X. Do you want to say “Um, sorry, but I couldn’t find an
efficient solution, please don’t fire me”?

Or would you rather say “Look, I didn’t find an efficient solution. But neither
could all the Turing-award winners out there put together, because the problem
is NP-hard”?

(This particular NP sales pitch is not my invention. This is how Garey and
Johnsson start their book [Garey and Johnson (1979)].)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 52/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reminder: Algorithmic Problems in Planning

Satisficing Planning

Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.

Optimal Planning

Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 54/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Decision Problems in (STRIPS) Planning

Definition (PlanEx). By PlanEx, we denote the problem of deciding,
given a STRIPS planning task Π, whether or not there exists a plan for Π.

→ Corresponds to satisficing planning.

Definition (PlanLen). By PlanLen, we denote the problem of deciding,
given a STRIPS planning task Π and an integer B, whether or not there
exists a plan for Π of length at most B.

→ Corresponds to optimal planning.

Definition (PolyPlanLen). By PolyPlanLen, we denote the problem of
deciding, given a STRIPS planning task Π and an integer B bounded by
a polynomial in the size of Π, whether or not there exists a plan for Π of
length at most B.

→ Corresponds to optimal planning with “small” plans. Example of a
planning domain with exponentially long plans? Towers of Hanoi.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 55/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Complexity of PlanEx [Bylander (1994)]

Lemma. PlanEx is PSPACE-hard.

→ ”At least as hard as any other problem contained in PSPACE.”

Proof Sketch. Given a Turing machine with space bounded by polynomial
p(|w|), we can in polynomial time (in the size of the machine) generate an
equivalent STRIPS planning task. Say the possible symbols in tape cells are
x1, . . . , xm and the internal states are s1, . . . , sn, accepting state sacc.

The contents of the tape cells:
in(1, x1), . . . , in(p(|w|), x1), . . . , in(1, xm), . . . , in(p(|w|), xm).

The position of the R/W head: at(1), . . . , at(p(|w|)).

The internal state of the machine: state(s1), . . . , state(sn).

Transitions rules 7→ STRIPS actions; accepting state 7→ STRIPS goal
{state(sacc)}; initial state obvious.

This reduction to STRIPS runs in polynomial-time because we need only
polynomially many facts.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 56/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Complexity of PlanEx, ctd. [Bylander (1994)]

Lemma. PlanEx is a member of PSPACE.

→ ”At most as hard as any other problem contained in PSPACE.”

Proof. Because PSPACE = NPSPACE, it suffices to show that PlanEx
is a member of NPSPACE:

1. s := I; l := 0;
2. Guess an applicable action a, compute the outcome state s′, set

l := l + 1;
3. If s′ contains the goal then succeed;
4. If l ≥ 2|P | then fail else goto 2;

→ Remembering the actual action sequence would take exponential
space in case of exponentially long plans (cf. slide 55). But, to decide
PlanEx, we only need to remember its length.

Theorem (Complexity of PlanEx). PlanEx is PSPACE-complete.
(Immediate from previous two lemmas)

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 57/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Complexity of PlanLen [Bylander (1994)]

PlanLen isn’t any easier than PlanEx:

Corollary. PlanLen is PSPACE-complete.

Proof. Membership: Same as before but failing at l ≥ B. Hardness?
Setting B := 2|P |, PlanLen answers PlanEx: If a plan exists, then there
exists a plan that traverses each possible state at most once.

PolyPlanLen is easier than PlanEx:

Theorem. PolyPlanLen is NP-complete.

Proof. Membership? Guess B actions and check whether they form a
plan. This runs in polynomial time because B is polynomially bounded.
Hardness: E.g., by reduction from SAT.

→ Bounding plan length does not help in the general case as we can set
the bound to a trivial (exponential) upper bound on plan length. If we
restrict plan length to be “short” (polynomial), planning becomes easier.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 58/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Domain-Specific PlanEx vs. PlanLen . . .

. . . is more interesting than the general case.

In general, both have the same complexity.

Within particular applications, bounded length plan existence is
often harder than plan existence.

This happens in many IPC benchmark domains: PlanLen is
NP-complete while PlanEx is in P.

For example: Blocksworld and Logistics.

→ PlanEx ≈ satisficing planning, PlanLen ≈ optimal planning. In
practice, optimal planning is (almost) never “easy”.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 59/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The Blocksworld is Hard?

Initial State Goal State

D

B

A

C

E

D

CBAE

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 60/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

The Blocksworld is Hard!

P

RAE

S

V

M

K

Y

G

O

T

J

Z

X

H

N

I

U

W

B

Q

L

F

D

C

Goal State

I

ODN

Z

X

C

V

B

M

A

S

F

G

H

H

J

K

L

Q

W

E

R

T

Y

U

Initial State

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 60/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Miconic-ADL: PlanEx is Hard

VIP: Served first.

D: Lift may only go down
when inside; similar for U.

NA: Never-alone; AT:
Attendant.

A, B: Never together in the
same elevator (!)

P: Normal passenger :-)

DVIP

U

NA

AT

B

A

P

???

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 61/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Summary

General problem solving attempts to develop solvers that perform well
across a large class of problems.

Planning, as considered here, is a form of general problem solving dedicated
to the class of classical search problems. (Actually, we also address
inaccessible, stochastic, dynamic, continuous, and multi-agent settings.)

Heuristic search planning has dominated the International Planning
Competition (IPC). We focus on it here.

STRIPS is the simplest possible, while reasonably expressive, language for
our purposes. It uses Boolean variables (facts), and defines actions in
terms of precondition, add list, and delete list.

PDDL is the de-facto standard language for describing planning problems.

Plan existence (bounded or not) is PSPACE-complete to decide for
STRIPS. If we bound plans polynomially, we get down to
NP-completeness.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 63/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reading

Chapters 10: Classical Planning and 11: Planning and Acting in the Real
World [Russell and Norvig (2010)].

Content: Although the book is named “A Modern Approach”, the planning
section was written long before the IPC was even dreamt of, before PDDL
was conceived, and several years before heuristic search hit the scene. As
such, what we have right now is the attempt of two outsiders trying in vain
to catch up with the dramatic changes in planning since 1995.

Chapter 10 is Ok as a background read. Some issues are, imho,
misrepresented, and it’s far from being an up-to-date account. But it’s Ok
to get some additional intuitions in words different from my own.

Chapter 11 is annoyingly named (I’ve seen lots of classical planning in the
“real world”), but is useful in our context here because I don’t cover any of
it. If you’re interested in extended/alternative planning paradigms, do read
it.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 64/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

Reading, ctd.

Everything You Always Wanted to Know About Planning (But Were Afraid
to Ask) [Hoffmann (2011)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf

Content: My personal perspective on planning. Very modern indeed.
Excerpt from the abstract:

The area has long had an affinity towards playful illustrative examples,
imprinting it on the mind of many a student as an area concerned with the
rearrangement of blocks, and with the order in which to put on socks and
shoes (not to mention the disposal of bombs in toilets). Working on the
assumption that this “student” is you – the readers in earlier stages of
their careers – I herein aim to answer three questions that you surely

desired to ask back then already:

What is it good for? Does it work? Is it interesting to do research in?

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 65/73

http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References I

Fahiem Bacchus. Subset of PDDL for the AIPS2000 Planning Competition. The
AIPS-00 Planning Competition Comitee, 2000.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
In S. Mellish, editor, Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), pages 1636–1642, Montreal, Canada, August
1995. Morgan Kaufmann.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1–2):279–298, 1997.

Blai Bonet and Héctor Geffner. Planning as heuristic search: New results. In
S. Biundo and M. Fox, editors, Proceedings of the 5th European Conference on
Planning (ECP’99), pages 60–72. Springer-Verlag, 1999.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,
129(1–2):5–33, 2001.

Tom Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 66/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References II

Carmel Domshlak, Jörg Hoffmann, and Michael Katz. Red-black planning: A new
systematic approach to partial delete relaxation. Artificial Intelligence, 221:73–114,
2015.

Stefan Edelkamp. Planning with pattern databases. In A. Cesta and D. Borrajo,
editors, Proceedings of the 6th European Conference on Planning (ECP’01), pages
13–24. Springer-Verlag, 2001.

Richard E. Fikes and Nils Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Michael R. Garey and David S. Johnson. Computers and Intractability—A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In S. Steel and R. Alami, editors, Proceedings of the 4th
European Conference on Planning (ECP’97), pages 221–233. Springer-Verlag, 1997.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 67/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References III

Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochastic local
search and temporal action graphs. Journal of Artificial Intelligence Research,
20:239–290, 2003.

Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artificial Intelligence,
173(5-6):619–668, 2009.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In
S. Chien, R. Kambhampati, and C. Knoblock, editors, Proceedings of the 5th
International Conference on Artificial Intelligence Planning Systems (AIPS’00),
pages 140–149, Breckenridge, CO, 2000. AAAI Press, Menlo Park.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 68/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References IV

Malte Helmert and Hector Geffner. Unifying the causal graph and additive heuristics.
In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric Hansen, editors,
Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS’08), pages 140–147. AAAI Press, 2008.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux,
editors, Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), pages 176–183, Providence, Rhode Island, USA, 2007.
Morgan Kaufmann.

Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

Jörg Hoffmann and Stefan Edelkamp. The deterministic part of ipc-4: An overview.
Journal of Artificial Intelligence Research, 24:519–579, 2005.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 69/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References V

Jörg Hoffmann. Everything you always wanted to know about planning (but were
afraid to ask). In Joscha Bach and Stefan Edelkamp, editors, Proceedings of the
34th Annual German Conference on Artificial Intelligence (KI’11), volume 7006 of
Lecture Notes in Computer Science, pages 1–13. Springer, 2011.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Michael Katz, Jörg Hoffmann, and Malte Helmert. How to relax a bisimulation? In
Blai Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors,
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 101–109. AAAI Press, 2012.

Michael Katz, Jörg Hoffmann, and Carmel Domshlak. Who said we need to relax all
variables? In Daniel Borrajo, Simone Fratini, Subbarao Kambhampati, and Angelo
Oddi, editors, Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13), pages 126–134, Rome, Italy, 2013. AAAI
Press.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 70/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References VI

Henry A. Kautz and Bart Selman. Planning as satisfiability. In B. Neumann, editor,
Proceedings of the 10th European Conference on Artificial Intelligence (ECAI’92),
pages 359–363, Vienna, Austria, August 1992. Wiley.

Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In William J. Clancey and Daniel Weld, editors, Proceedings
of the 13th National Conference of the American Association for Artificial
Intelligence (AAAI’96), pages 1194–1201, Portland, OR, July 1996. MIT Press.

Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning. In
M. Pollack, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), pages 318–325, Stockholm, Sweden, August 1999.
Morgan Kaufmann.

Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Semi-relaxed plan heuristics. In Blai
Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors,
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12), pages 128–136. AAAI Press, 2012.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 71/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References VII

Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopoulos. Extending
planning graphs to an ADL subset. In S. Steel and R. Alami, editors, Proceedings of
the 4th European Conference on Planning (ECP’97), pages 273–285.
Springer-Verlag, 1997.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. The PDDL Planning Domain Definition
Language. The AIPS-98 Planning Competition Comitee, 1998.

Allen Newell and Herbert Simon. GPS, a program that simulates human thought. In
E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–293.
McGraw-Hill, 1963.

Raz Nissim, Jörg Hoffmann, and Malte Helmert. Computing perfect heuristics in
polynomial time: On bisimulation and merge-and-shrink abstraction in optimal
planning. In Toby Walsh, editor, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI’11), pages 1983–1990. AAAI
Press/IJCAI, 2011.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 72/73

Introduction Planning History STRIPS Planning PDDL Language Why C.? Planning C. Conclusion References

References VIII

J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order
planner for ADL. In B. Nebel, W. Swartout, and C. Rich, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the 3rd International
Conference (KR-92), pages 103–114, Cambridge, MA, October 1992. Morgan
Kaufmann.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170(12-13):1031–1080,
2006.

Jussi Rintanen. Heuristics for planning with SAT. In Proceeedings of the 16th
International Conference on Principles and Practice of Constraint Programming,
pages 414–428, 2010.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Koehler and Torralba Artificial Intelligence Chapter 13: Planning, Part I 73/73

	Introduction
	

	The History of Planning
	

	The STRIPS Planning Formalism
	

	The PDDL Language
	

	Why Complexity Analysis?
	

	Planning Complexity
	

	Conclusion
	

	
	References

