
Introduction GDL GGP Alpha Zero Conclusion References

Artificial Intelligence
12. General Game Playing

One AI to Play All Games and Win Them All

Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Dr. Peter Kissmann for slide sources

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 1/53



Introduction GDL GGP Alpha Zero Conclusion References

Agenda

1 Introduction

2 The Game Description Language (GDL)

3 Playing General Games

4 Learning Evaluation Functions: Alpha Zero

5 Conclusion

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 2/53



Introduction GDL GGP Alpha Zero Conclusion References

Deep Blue Versus Garry Kasparov (1997)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 4/53



Introduction GDL GGP Alpha Zero Conclusion References

Games That Deep Blue Can Play

1 Chess

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 5/53



Introduction GDL GGP Alpha Zero Conclusion References

Chinook Versus Marion Tinsley (1992)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 6/53



Introduction GDL GGP Alpha Zero Conclusion References

Games That Chinook Can Play

1 Checkers

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 7/53



Introduction GDL GGP Alpha Zero Conclusion References

Games That a General Game Player Can Play

1 Chess

2 Checkers

3 Chinese Checkers

4 Connect Four

5 Tic-Tac-Toe

6 . . .

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 8/53



Introduction GDL GGP Alpha Zero Conclusion References

Games That a General Game Player Can Play (Ctd.)

5 . . .

6 Othello

7 Nine Men’s Morris

8 15-Puzzle

9 Nim

10 Sudoku

11 Pentago

12 Blocker

13 Breakthrough

14 Lights Out

15 Amazons

16 Knightazons

17 Blocksworld

18 Zhadu

19 Pancakes

20 Quarto

21 Knight’s Tour

22 n-Queens

23 Blob Wars

24 Bomberman (simplified)

25 Catch a Mouse

26 Chomp

27 Gomoku

28 Hex

29 Cubicup

30 . . .
Koehler and Torralba Artificial Intelligence Chapter 12: GGP 9/53



Introduction GDL GGP Alpha Zero Conclusion References

Games That a General Game Player Can Play (Ctd.)

94 . . .

95 Bidding Tic-Tac-Toe

96 9-Board Tic-Tac-Toe

97 Finding the way out of a labyrinth

98 Rock-Paper-Scissors

99 Iterated Prisoner’s Dilemma

And many, many more. . .

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 10/53



Introduction GDL GGP Alpha Zero Conclusion References

General Game Playing

General game players can

read and process arbitrary game descriptions

play efficiently based on the game descriptions

Difference to specialized players (such as Deep Blue, Chinook, etc.):

General game players

have no special knowledge about game at hand

must establish any knowledge on their own

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 11/53



Introduction GDL GGP Alpha Zero Conclusion References

How General are General Games?

Nowadays: Game Description Language (GDL) [Love et al. (2008)]

Difference to Adversarial Search

Any number of players (≥ 1)

Simultaneous move games only (turn-taking games modeled by use
of noops, i.e., moves that do not change the current state)

Rewards integers in [0,100] for all players; not necessarily zero-sum

Some Limitations Remain

finite

discrete

deterministic (i.e., no games of chance such as dice games)

full information for all players (i.e., prohibits most card games)

Last two points covered by GDL-II (GDL for Incomplete Information)
[Thielscher (2010)], though rarely used.
Koehler and Torralba Artificial Intelligence Chapter 12: GGP 13/53



Introduction GDL GGP Alpha Zero Conclusion References

How to Describe a General Game?

Adversarial Search Game State Space

Recall: Θ = (S,A, T, I, ST , u) (S: states/positions, A: actions/moves,
T : transition relation, I: initial state, ST : terminal states, u: utility
function).

Minimal Requirements in GGP

State description

Number of players

Initial state

Legal moves (for all players given current state) – the actions/moves

Successor generation (given current state and all players’ moves) –
the transition relation

Termination (given current state)

Rewards (for all players given current state) – the utility
Koehler and Torralba Artificial Intelligence Chapter 12: GGP 14/53



Introduction GDL GGP Alpha Zero Conclusion References

How to Describe a General Game? (Ctd.)

Full State Space

Problems:

State-space explosion problem

Tic-Tac-Toe: 5,478
Connect Four:
4,531,985,219,092 ≈ 4.5× 1012

15-Puzzle:
10,461,394,944,000 ≈ 1013

Thus, immense memory
requirement → not practical

Alternative: Logical Input (Declarative Description)

Much more compact; easier to use for analysis.
Here, Game Description Language (GDL) used [Love et al. (2008)]

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 15/53



Introduction GDL GGP Alpha Zero Conclusion References

The Game Description Language (GDL) – States

Representation of States

States represented by set of predicates of the form
(true <fact>)

meaning that <fact> is true in the current state.

Example (Tic-Tac-Toe)

{(true (cell 1 1 o)),
(true (cell 2 1 o)),
(true (cell 3 1 b)),
(true (cell 1 2 x)),
(true (cell 2 2 x)),
(true (cell 3 2 x)),
(true (cell 1 3 b)),
(true (cell 2 3 x)),
(true (cell 3 3 o))}
Koehler and Torralba Artificial Intelligence Chapter 12: GGP 16/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rules

Rules in GDL

GDL based on Datalog. It uses (logical) rules. A rule is a kind of
implication consisting of a head predicate and a body, which in turn
consists of a number of predicates <body 1>, . . . , <body n>:

(<head> ⇐
<body 1>

...

<body n>

)

head is true if every part of body is true or body is empty.

predicates can have arguments; may be constants or variables, latter
denoted by prefix ‘?’

in evaluation, a variable can be replaced by any constant, but all
appearances of a variable in one rule must be replaced by the same
constant.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 17/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rules (Ctd.)

Example (Tic-Tac-Toe)

((row ?r ?p) ⇐
(true (cell 1 ?r ?p))

(true (cell 2 ?r ?p))

(true (cell 3 ?r ?p))

)

Row ?r completely marked with ?p

if every cell in that row
marked with ?p

Evaluation with our state for ?r = 1 and ?p = o:

Example (Tic-Tac-Toe)

((row 1 o) ⇐
(true (cell 1 1 o))

(true (cell 2 1 o))

(true (cell 3 1 o))

)

{(true (cell 1 1 o)),
(true (cell 2 1 o)),
(true (cell 3 1 b)),
(true (cell 1 2 x)),
(true (cell 2 2 x)),
(true (cell 3 2 x)),
(true (cell 1 3 b)),
(true (cell 2 3 x)),
(true (cell 3 3 o))}

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 18/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rules (Ctd.)

Example (Tic-Tac-Toe)

((row ?r ?p) ⇐
(true (cell 1 ?r ?p))

(true (cell 2 ?r ?p))

(true (cell 3 ?r ?p))

)

Row ?r completely marked with ?p

if every cell in that row
marked with ?p

Evaluation with our state for ?r = 2 and ?p = x:

Example (Tic-Tac-Toe)

((row 2 x) ⇐
(true (cell 1 2 x))

(true (cell 2 2 x))

(true (cell 3 2 x))

)

{(true (cell 1 1 o)),
(true (cell 2 1 o)),
(true (cell 3 1 b)),
(true (cell 1 2 x)),
(true (cell 2 2 x)),
(true (cell 3 2 x)),
(true (cell 1 3 b)),
(true (cell 2 3 x)),
(true (cell 3 3 o))}

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 18/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rules (Ctd.)

We can also iterate such rules.

Example (Tic-Tac-Toe)

((line ?p) ⇐ (row ?r ?p))

((line ?p) ⇐ (column ?c ?p))

((line ?p) ⇐ (diagonal ?p))

Line of three equal symbols ?p, if
some row ?r has 3 ?p, or
some column ?c has 3 ?p, or
some diagonal has 3 ?p.

To evaluate line, we first must evaluate row. We already know that
(row 2 x) holds, so (line x) holds as well.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 19/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Players

Players

For each player, a rule of the form
(role <player>)

must be specified.

Example (Tic-Tac-Toe)

(role xplayer)

(role oplayer)

Thus, we have two players, xplayer and oplayer

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 20/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Initial State

Initial State

Set of all rules of the form
(init <fact>)

build the initial state (each such <fact> holds).

Example (Tic-Tac-Toe)

(init (cell 1 1 b))

...

(init (cell 3 3 b))

(init (control xplayer))

Board
initially
empty (b)
xplayer is starting player

Note: control is no GDL keyword; the player has to derive the
connection between this fact and the player to move automatically.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 21/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Initial State (Ctd.)

In evaluation of rules we need true predicates:
To set the current state to the initial one, we must transform all
(init <fact>) to (true <fact>) in our internal representation

Example (Tic-Tac-Toe)

(init (cell 1 1 b))

(init (cell 2 1 b))

(init (cell 3 1 b))

(init (cell 1 2 b))

(init (cell 2 2 b))

(init (cell 3 2 b))

(init (cell 1 3 b))

(init (cell 2 3 b))

(init (cell 3 3 b))

(init (control xplayer))

⇒

{(true (cell 1 1 b)),
(true (cell 2 1 b)),
(true (cell 3 1 b)),
(true (cell 1 2 b)),
(true (cell 2 2 b)),
(true (cell 3 2 b)),
(true (cell 1 3 b)),
(true (cell 2 3 b)),
(true (cell 3 3 b)),
(true (control xplayer))}

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 22/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Legal Moves

Legal Moves

A <player> can perform a certain <move> if the body of a rule
((legal <player> <move>) ⇐ <body>)

is evaluated to true.

Example (Tic-Tac-Toe)

((legal xplayer (mark ?x ?y)) ⇐
(true (control xplayer))

(true (cell ?x ?y b))

)

xplayer may mark cell (x, y), if
it is xplayer’s turn to move and
cell (x, y) is currently empty (b).

Example (Tic-Tac-Toe)

((legal oplayer noop) ⇐
(true (control xplayer))

)

oplayer may do nothing (noop), if
it is xplayer’s turn to move.
Note: noop is no GDL keyword.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 23/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Chosen Moves

Representation of Chosen Moves

When we know that a <player> chose to perform some <move> we add a
predicate of the form

(does <player> <move>)

to our internal representation of the current state.

Example (Tic-Tac-Toe)

{(true (cell 1 1 b)),
(true (cell 2 1 b)),
(true (cell 3 1 b)),
(true (cell 1 2 b)),
(true (cell 2 2 b)),
(true (cell 3 2 b)),
(true (cell 1 3 b)),
(true (cell 2 3 b)),
(true (cell 3 3 b)),
(true (control xplayer))}

xplayer: (mark 1 1)

oplayer: noop

⇒

{(true (cell 1 1 b)),
(true (cell 2 1 b)),
(true (cell 3 1 b)),
(true (cell 1 2 b)),
(true (cell 2 2 b)),
(true (cell 3 2 b)),
(true (cell 1 3 b)),
(true (cell 2 3 b)),
(true (cell 3 3 b)),
(true (control xplayer)),
(does xplayer (mark 1 1)),
(does oplayer noop)}

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 24/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Successor Generation

Successor Generation

Each <fact> that will be true in the successor state must appear in the
head of a next rule

((next <fact>) ⇐ <body>)

whose body is evaluated to true in the current state given the chosen
moves.

Example (Tic-Tac-Toe)

((next (cell ?m ?n x)) ⇐
(does xplayer (mark ?m ?n))

)

(m,n) will be marked with x, if
xplayer chose to mark it now.

Example (Tic-Tac-Toe)

((next (control oplayer)) ⇐
(true (control xplayer))

)

It will be oplayer’s turn next, if
it was xplayer’s turn now.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 25/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Successor Generation (Ctd.)

Important

Everything that can be derived from the next rules is true in the
successor state.
Nothing else is true in the successor state.

Example (Tic-Tac-Toe)

If we have only one next rule:
((next (cell ?m ?n x)) ⇐

(does xplayer (mark ?m ?n)))

If the xplayer chose to (mark 1 1), we know that in the successor
state (true (cell 1 1 x)) holds.
However, nothing else holds – there is no memory involved. The old state
is completely discarded and the successor state created based only on the
outcome of the next rules.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 26/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Successor Generation (Ctd.)

Important

Thus, it is necessary that all things that do not change are explicitly
modeled as well.

Example (Tic-Tac-Toe)

((next (cell ?m ?n x)) ⇐
(true (cell ?m ?n x))

)

((next (cell ?m ?n o)) ⇐
(true (cell ?m ?n o))

)

In the next state a cell will
remain marked with x, if it is
marked so in the current state.
Same for o.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 27/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Successor Generation (Ctd.)

Generating Successor State

Having evaluated the next rules, we must store the successor state as
the new current state.

Example (Tic-Tac-Toe)
{(true (cell 1 1 b)),
(true (cell 2 1 b)),
(true (cell 3 1 b)),
(true (cell 1 2 b)),
(true (cell 2 2 b)),
(true (cell 3 2 b)),
(true (cell 1 3 b)),
(true (cell 2 3 b)),
(true (cell 3 3 b)),
(true (control xplayer)),
(does xplayer (mark 1 1)),
(does oplayer noop)}

evaluate
next

rules
⇒

{(next (cell 1 1 x)),
(next (cell 2 1 b)),
(next (cell 3 1 b)),
(next (cell 1 2 b)),
(next (cell 2 2 b)),
(next (cell 3 2 b)),
(next (cell 1 3 b)),
(next (cell 2 3 b)),
(next (cell 3 3 b)),
(next (control oplayer))}

set
succ.
state
⇒

{(true (cell 1 1 x)),
(true (cell 2 1 b)),
(true (cell 3 1 b)),
(true (cell 1 2 b)),
(true (cell 2 2 b)),
(true (cell 3 2 b)),
(true (cell 1 3 b)),
(true (cell 2 3 b)),
(true (cell 3 3 b)),
(true (control oplayer))}

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 28/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Termination

Termination

The game ends when the body of any rule
(terminal ⇐ <body>)

is evaluated to true.

Example (Tic-Tac-Toe)

(terminal ⇐ (line x))

(terminal ⇐ (line o))

(terminal ⇐ (boardfilled))

The game ends, if
we have a line of 3 xs.
Or 3 os.
Or no cell is empty anymore.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 29/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rewards

Rewards

A <player> will get a specified <reward> if the body of a rule
((goal <player> <reward>) ⇐ <body>)

is evaluated to true.
In GDL, rewards are integers in the range [0,100], with 100 being best.

Example (Tic-Tac-Toe)

((goal xplayer 100) ⇐ (line x))
xplayer gets 100 points if
we have a line of 3 xs on the
board.

Example (Tic-Tac-Toe)

((goal oplayer 0) ⇐ (line x))
In the same situation,
oplayer gets 0 points.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 30/53



Introduction GDL GGP Alpha Zero Conclusion References

GDL – Rewards (Ctd.)

General games allow much more general outcomes than in our adversarial
search setting:

(partly) cooperative games (i.e., several players get same reward →
should work together to achieve highest possible outcome)

different rewards depending on actual outcome – not necessarily
zero-sum

classical zero-sum games – here in the form of constant-sum games
(the sums of the players’ rewards always sum up to 100).

To transform zero-sum game from GGP setting to our adversarial search
setting: Set utility to reward(first player) – reward(second player)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 31/53



Introduction GDL GGP Alpha Zero Conclusion References

Example – Chomp

Reminder: Minimal Requirements

State description

Number of players

Initial state

Legal moves

Successor generation

Termination

Rewards

(role eater)
(role muncher)

(init (chocolate 1 1)) [...] (init (chocolate 8 7))
(init (control eater))

((legal ?player (bite ?x ?y)) ⇐
(true (control ?player))
(true (chocolate ?x ?y)))

((legal eater noop) ⇐ (true (control muncher)))
((legal muncher noop) ⇐ (true (control eater)))

((next (chocolate ?x ?y)) ⇐
(true (chocolate ?x ?y))
(does ?player (bite ?i ?j))
(less than ?x ?i))

((next (chocolate ?x ?y)) ⇐
(true (chocolate ?x ?y))
(does ?player (bite ?i ?j))
(less than ?y ?j))

((next (control eater)) ⇐ (true (control muncher)))
((next (control muncher)) ⇐ (true (control eater)))

((next (poisoned ?p)) ⇐ (does ?p (bite 1 1)))

(terminal ⇐ (true (poisoned ?p)))

((goal eater 100) ⇐ (true (poisoned muncher)))
((goal muncher 100) ⇐ (true (poisoned eater)))

((goal ?player 0) ⇐ (true (poisoned ?player)))

((less than ?n ?m) ⇐ (succ ?n ?m))
((less than ?n ?m) ⇐

(succ ?k ?m)
(less than ?n ?k))

(succ 1 2) [...] (succ 7 8)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 32/53



Introduction GDL GGP Alpha Zero Conclusion References

Example – Chomp (Ctd.)

Side-Remark

Chomp is won by the starting player – no matter the size of the
rectangular board.
Proof by strategy-stealing argument:

Assume, the second player had a winning strategy

Then that one must be able to find a winning move for every
possible first move

Assume that the first player bites only one piece (i.e., the top-right
position)

With this we know that the second player must have a winning move

However, any move that the second player can play here could have
been played by the first player in the initial state

Thus, it must be the first player who has such a winning strategy

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 33/53



Introduction GDL GGP Alpha Zero Conclusion References

How Does GGP Work?

1 GGP server sends game description + starttime + movetime to players

2 players have starttime seconds for initial evaluation

3 players have movetime seconds for evaluation, then send move to server

4 server updates state

5 if terminal, goto step 9

6 server informs all players about all performed moves

7 players update their current state

8 continue with step 3

9 server sends STOP along with the chosen moves to all players; game ends

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 35/53



Introduction GDL GGP Alpha Zero Conclusion References

Let’s Play a Game

http://ggpserver.general-game-playing.de

Current form of GGP introduced around 2005 by Games-group of
Stanford University

Since 2005 annual GGP competitions at top-level AI conferences

Question!

What algorithm would you use for GGP:

1 Minimax

2 AlphaBeta

3 MCTS

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 36/53

http://ggpserver.general-game-playing.de


Introduction GDL GGP Alpha Zero Conclusion References

Playing General Games

In earliest competitions (2005 and 2006) most successful players
performed Alpha-Beta search. Alpha-Beta quite general but:. . .

only defined for two-player turn-taking zero-sum games

difficult to find reasonable automatically generated evaluation
function (cannot use expert knowledge)

Rules of Chess → Pawn (Bauer) 1, Knight (Springer) 3, Bishop (Läufer)
3, Rook (Turm) 5, Queen (Dame) 9.

Since 2007 all winners of competition used UCT: though there is still a
lot of margin of improvement . . .

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 37/53



Introduction GDL GGP Alpha Zero Conclusion References

Lack of Evaluation Functions: Learning to the Rescue

(description of a game in modeling language)

training phase

(knowledge about the game) ⇒

(current position)

general game player

(play)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 39/53



Introduction GDL GGP Alpha Zero Conclusion References

Alpha Zero

Chess Go Shogi

1997 2016 2017
DeepBlue vs. Kasparov AlphaGo vs. Lee Sedol Bonanza vs. 9-dan

2017: AlphaZero trains itself in a few hours to play chess, go, and shogi.

Then, it defeats current best programs:

Chess: Stockfish1 (+28, =72, -0)

Go: AlphaGoZero (+60, -40)

Shogi: Elmo (+90, =2, -8)
1Not 100% clear if the setting was fair for Stockfish.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 40/53



Introduction GDL GGP Alpha Zero Conclusion References

From Alpha Go to Leela Zero

Common aspects: combine MCTS and Neural Networks

AlphaGo: specialized program to play Go

Used games from Go profesionals as training data
Several neural networks with a complicated architecture

AlphaZero: common architecture for Chess, Go, and Shogi

Simpler than AlphaGo: a single neural network per game
Reinforcement learning from scratch without additional training data
But: not open source and only published partial data, used TPU’s

Leela Zero: open-source version of AlphaZero

Standard hardware (CPU and GPU)
LeelaChessZero won the TCEC Season 15 in May’19 (after training
for more than a year, more than 200 million games.)

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 41/53



Introduction GDL GGP Alpha Zero Conclusion References

AlphaGo: Overview

Neural Networks:

Policy networks: Given a state s, output a probability distibution
over the actions applicable in s.

Value networks: Given a state s, outpout a number estimating the
game value of s.

Combination with MCTS:

Policy networks bias the action choices within the MCTS tree (and
hence the leaf-state selection), and bias the random samples.

Value networks are an additional source of state values in the MCTS
tree, along with the random samples.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 42/53



Introduction GDL GGP Alpha Zero Conclusion References

Neural Networks

Input layer: Description of the game state
Output layer: What we want to predict (e.g. utility of the state in
value networks, probability of a in policy networks)
Supervised Learning: Given a set of training data (positions for
which we know their utility), configure the net so that the error is
minimized for those positions.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 43/53



Introduction GDL GGP Alpha Zero Conclusion References

Neural Networks in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

Rollout policy pπ: Simple but fast, ≈ prior work on Go.

SL policy network pσ: Supervised learning, human-expert data (“learn to
choose an expert action”).

RL policy network pρ: Reinforcement learning, self-play (“learn to win”).

Value network vθ: Use self-play games with pρ as training data for
game-position evaluation vθ (“predict which player will win in this state”).

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 44/53



Introduction GDL GGP Alpha Zero Conclusion References

Neural Networks + MCTS in AlphaGo

Illustration: (taken from [Silver et al. (2016)])

Rollout policy pπ: Action choice in random samples.

SL policy network pσ: Action choice bias within the UCTS tree (stored as
“P”, gets smaller to “u(P )” with number of visits); along with quality Q.

RL policy network pρ: Not used here (used only to learn vθ).

Value network vθ: Used to evaluate leaf states s, in linear sum with the
value returned by a random sample on s.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 45/53



Introduction GDL GGP Alpha Zero Conclusion References

Alpha Zero: MCTS

Neural Network: function f(s) that returns pa = P (a|s) for all
a ∈ A, plus expected utility from position s.

Run Monte-Carlo Tree Search with the following modifications:

In leaf nodes, the neural network is evaluated (no random play until
end of the game).
When traversing the tree, the probability of choosing a depends on
pa, apart from the number of times that a was previously selected
and the estimated utility of its outcome.

Why not use Alpha Beta with such an evaluation function?

→Taking average of evaluation function reduces the impact of the

“noise” in the learnt evaluation function

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 46/53



Introduction GDL GGP Alpha Zero Conclusion References

Alpha Zero: Training Phase

Goal: Learn function f(s) that returns pa = P (a|s) for all a ∈ A,
plus expected utility from position s.

f is learnt by playing games against itself. After each game, f is
updated to:

1 Minimize the error between expected and real outcome.
2 Minimize the difference between pa and probability of a to be

selected by MCTS in s.

Requires very little domain knowledge:

Rules of the game (BlackBox formulation)
The neural network architecture is matched to the grid-structure of
the board (in a non trivial way)
The typical number of legal moves is used to scale exploration noise
Long games are considered draws

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 47/53



Introduction GDL GGP Alpha Zero Conclusion References

AlphaZero, Conclusion?

Opinions?

My 5 cents: Definitely a great achievement.

Lots of questions to explore. OpenSource project for Go
(https://github.com/leela-zero/leela-zero) and
chess(http://lczero.org/)

“Search + neural networks” looks like a great formula for general
problem solving.

→ I expect lots of research on this in the coming decade(s). (In FAI,
amongst others.)

AlphaZero for GGP?
AlphaZero is simpler than AlphaGo but its design is still quite
intricate (architecture, neural network architectures, . . . ).

→ Still some human expertise in here.

→ How much of this is reusable in/generalizes to other problems?

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 48/53

http://lczero.org/


Introduction GDL GGP Alpha Zero Conclusion References

Summary

GGP is an extension of classical search problems and adversarial
search problems: Support for any number of players, simultaneous
moves and non-zero-sum utilities.

Programmer does not know which game will be played, thus
domain-independent algorithms must be used (no expert
knowledge).

Game Description Language GDL used for concise description of
general games.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 50/53



Introduction GDL GGP Alpha Zero Conclusion References

Discussion

Alpha-Beta used early on. Later, change of paradigm to
simulation-based search (UCT) – very fast and no expert knowledge
needed.

However, UCT bad if many traps in search space

Research in general evaluation functions not far enough to beat
UCT based players consistently

Several ways overcoming this in current research:

Use pure Alpha-Beta search, find efficient general evaluation
functions (e.g. learning as in AlphaZero).
Use UCT and enhance it with Minimax-based approaches (e.g.,
propagate Minimax values instead of averages within search tree,
and/or use evaluation function instead of playouts with some
probability) to bridge the gap between these approaches.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 51/53



Introduction GDL GGP Alpha Zero Conclusion References

Web Sources

Lots of additional information (e.g., GGP lecture slides, literature,
basic players) collected at
http://www.general-game-playing.de

GGP Server online (originally developed at TU Dresden):

http://ggpserver.general-game-playing.de

Large number of game descriptions (currently more than 290)
Everyone can register
Possibility of self-play
Possibility to register player (and let it play)
Round-robin all the time
Often used in competitions

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 52/53

http://www.general-game-playing.de
http://ggpserver.general-game-playing.de


Introduction GDL GGP Alpha Zero Conclusion References

References I

Nathaniel C. Love, Timothy L. Hinrichs, and Michael R. Genesereth. General game
playing: Game description language specification. Technical Report LG-2006-01,
Stanford Logic Group, 2008.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

Michael Thielscher. A general game description language for incomplete information
games. In Maria Fox and David Poole, editors, Proceedings of the 24th National
Conference of the American Association for Artificial Intelligence (AAAI’10), pages
994–999, Atlanta, GA, USA, July 2010. AAAI Press.

Koehler and Torralba Artificial Intelligence Chapter 12: GGP 53/53


	Introduction
	

	The Game Description Language (GDL)
	

	Playing General Games
	

	Learning Evaluation Functions: Alpha Zero
	

	Conclusion
	

	
	References

