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The Wumpus World
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The Wumpus World

Actions: GoForward, TurnRight (by 90◦), TurnLeft
(by 90◦), Grab object in current cell, Shoot arrow
in direction you’re facing (you got exactly one
arrow), Leave cave if you’re in cell [1,1].

→ Fall down Pit, meet live Wumpus: Game Over.

Initial knowledge: You’re in cell [1,1] facing east.
There’s a Wumpus, and there’s gold.

Goal: Have the gold and be outside the cave.

Percepts: [Stench,Breeze,Glitter ,Bump,Scream]

Cell adjacent (i.e. north, south, west, east) to Wumpus: Stench (else: None).

Cell adjacent to Pit: Breeze (else: None).

Cell that contains gold: Glitter (else: None).

You walk into a wall: Bump (else: None).

Wumpus shot by arrow: Scream (else: None).
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Reasoning in the Wumpus World

A: Agent, V: Visited, OK: Safe, P: Pit, W: Wumpus, B: Breeze, S: Stench, G: Gold

(1) Initial state

(2) One step to right (3) Back, and up to [1,2]

→ The Wumpus is in [1,3]! How do we know? Because in [2,1] we perceived no
Stench, the Stench in [1,2] can only come from [1,3].

→ There’s a Pit in [3,1]! How do we know? Because in [1,2] we perceived no
Breeze, the Breeze in [2,1] can only come from [3,1].
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Agents that Think Rationally

Think Before You Act!

7 LOGICAL AGENTS

function KB-AGENT(percept ) returns anaction
persistent: KB , a knowledge base

t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))
action← ASK(KB , MAKE-ACTION-QUERY(t))
TELL(KB , MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agentadds the percept to its
knowledge base, asks the knowledge base for the best action,and tells the knowledge base that it has in
fact taken that action.

16

→ ”Thinking” = Reasoning about knowledge represented using logic.
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Logic: Basic Concepts

Representing Knowledge:

Syntax: What are legal statements (formulas) ϕ in the logic?

E.g., “P” and “P → Q”.

Semantics: Which formulas ϕ are true under which interpretation I,
written I |= ϕ?

E.g., I := {P = 1, Q = 0}. Then I |= P but I 6|= P → Q.

Reasoning about Knowledge:

Entailment: Which ψ follow from (are entailed by) ϕ, written ϕ |= ψ,
meaning that, for all I s.t. I |= ϕ, we have I |= ψ? E.g., P ∧P → Q |= Q.

Deduction: Which statements ψ can be derived from ϕ using a set R of
inference rules (a calculus), written ϕ `R ψ?

E.g., if our only rule is
ϕ1, ϕ1 → ψ

ψ
then P ∧ (P → Q) `RQ.

→ Calculus soundness: whenever ϕ `R ψ, we also have ϕ |= ψ. Calculus
completeness: whenever ϕ |= ψ, we also have ϕ `R ψ.
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General Problem Solving using Logic

(some new problem)

model problem in logic 7→ use off-the-shelf reasoning tool

(its solution)

“Any problem that can be formulated as reasoning about logic.”

Very successful using propositional logic and modern solvers for
SAT! (Propositional satisfiability testing, Chapter 11.)
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Propositional Logic and Its Applications

→ Propositional logic = canonical form of knowledge + reasoning.

Syntax: Atomic propositions that can be either true or false,
connected by “and, or, not”.

Semantics: Assign value to every proposition, evaluate connectives.

Applications: Despite its simplicity, widely applied!

Product configuration (e.g., Mercedes). Check consistency of
customized combinations of components.

Hardware verification (e.g., Intel, AMD, IBM, Infineon). Check
whether a circuit has a desired property p.

Software verification: Similar.

CSP applications (cf. Chapter 8): Propositional logic can be
(successfully!) used to formulate and solve CSP problems.

→ Chapter 11 gives an example for verification.
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Our Agenda for This Topic

→ Our treatment of the topic “Propositional Reasoning” consists of
Chapters 9 and 10.

This Chapter: Basic definitions and concepts; resolution.

→ Sets up the framework. Resolution is the quintessential reasoning
procedure underlying most successful solvers.

Chapter 11: The Davis-Putnam procedure and clause learning;
practical problem structure.

→ State-of-the-art algorithms for reasoning about propositional
logic, and an important observation about how they behave.
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Our Agenda for This Chapter

Propositional Logic: What’s the syntax and semantics? How can
we capture deduction?

→ Formalizes this logic.

Resolution: How does resolution work? What are its properties?

→ Formally introduces the most basic reasoning method.

Killing a Wumpus: How can we use all this to figure out where the
Wumpus is?

→ Coming back to our introductory example.
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5 Conclusion
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Syntax of Propositional Logic

→ Atoms Σ in propositional logic = Boolean variables.

Definition (Syntax). Let Σ be a set of atomic propositions. Then:

1. ⊥ and > are Σ-formulas. (“False”, “True”)

2. Each P ∈ Σ is a Σ-formula. (“Atom”)

3. If ϕ is a Σ-formula, then so is ¬ϕ. (“Negation”)

If ϕ and ψ are Σ-formulas, then so are:

4. ϕ ∧ ψ (“Conjunction”)

5. ϕ ∨ ψ (“Disjunction”)

6. ϕ→ ψ (“Implication”)

7. ϕ↔ ψ (“Equivalence”)

Example: Wumpus-[2,2] → Stench-[2,1].

Notation: Atoms and negated atoms are called literals. Operator
precedence: ¬ > . . . (we’ll be using brackets except for negation).
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Semantics of Propositional Logic

Definition (Semantics). Let Σ be a set of atomic propositions. An
interpretation of Σ, also called a truth assignment, is a function
I : Σ 7→ {1, 0}. We set:

I |= >
I 6|= ⊥
I |= P iff P I = 1
I |= ¬ϕ iff I 6|= ϕ
I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ
I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ
I |= ϕ→ ψ iff if I |= ϕ, then I |= ψ
I |= ϕ↔ ψ iff I |= ϕ if and only if I |= ψ

If I |= ϕ, we say that I satisfies ϕ, or that I is a model of ϕ. The set of
all models of ϕ is denoted by M(ϕ).
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Semantics of Propositional Logic: Examples

Example

Formula: ϕ = [(P ∨Q)↔ (R ∨ S)] ∧ [¬(P ∧Q) ∧ (R ∧ ¬S)]

→ For I with I(P ) = 1, I(Q) = 1, I(R) = 0, I(S) = 0, do we have
I |= ϕ?

No: (P ∨Q) is true but (R ∨ S) is false, so the left-hand side of
the conjunction is false and the overall formula is false.

Example

Formula: ϕ = Wumpus-[2,2] → Stench-[2,1]

→ For I with I(Wumpus-[2,2]) = 0, I(Stench-[2,1]) = 1, do we have
I |= ϕ? Yes: ϕ = ψ1 → ψ2 is true iff either ψ1 is false, or ψ2 is true (i.e.,
ψ1 → ψ2 has the same models as ¬ψ1 ∨ ψ2).
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Terminology

Knowledge Base, Models

A Knowledge Base (KB) is a set of formulas. An interpretation is a
model of KB if I |= ϕ for all ϕ ∈ KB.

→ Knowledge Base = set of formulas, interpreted as a conjunction.

Satisfiability

A formula ϕ is:

satisfiable if there exists I that satisfies ϕ.

unsatisfiable if ϕ is not satisfiable.

falsifiable if there exists I that doesn’t satisfy ϕ.

valid if I |= ϕ holds for all I. We also call ϕ a tautology.

Equivalence

Formulas ϕ and ψ are equivalent, ϕ ≡ ψ, if M(ϕ) = M(ψ).
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Entailment

Remember (slide 5)? Does our knowledge of the cave entail a definite
Wumpus position?

→ We don’t know everything; what can we conclude from the things we do
know?

Definition (Entailment). Let Σ be a set of atomic propositions. We say that a
set of formulas KB entails a formula ϕ, written KB |= ϕ, if ϕ is true in all
models of KB, i.e., M(

∧
ψ∈KB) ⊆M(ϕ). In this case, we also say that ϕ

follows from KB.

→ The following theorem is simple, but will be crucial later on:

Contradiction Theorem. KB |= ϕ if and only if KB ∪ {¬ϕ} is unsatisfiable.

Proof. “⇒”: Say KB |= ϕ. Then for any I where I |= KB we have I |= ϕ and
thus I 6|= ¬ϕ. “⇐”: Say KB ∪ {¬ϕ} is unsatisfiable. Then for any I where
I |= KB we have I 6|= ¬ϕ and thus I |= ϕ.

→ Entailment can be tested via satisfiability.
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The Truth Table Method

Want: Determine whether ϕ is satisfiable, valid, etc.

Method: Build the truth table, enumerating all interpretations of Σ.

Example

Is ϕ = ((P ∨H) ∧ ¬H)→ P valid?
P H P ∨H (P ∨H) ∧ ¬H (P ∨H) ∧ ¬H → P

0 0 0 0 1

0 1 1 0 1

1 0 1 1 1

1 1 1 0 1

→ Yes. ϕ is true for all possible combinations of truth values.

→ Is this a good method for answering these questions? No! For N
propositions, the truth table has 2N rows. [Satisfiability (validity) testing
is NP-hard (co-NP-hard), but that pertains to worst-case behavior.]
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Questionnaire

There are three persons, Stefan (S), Nicole (N), and Jochen (J).

1. Their hair colors are

contained in black (bla), red (red), and green (gre). 2a. Their study subjects are contained in

informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.

Question!

Who studies informatics?
(A): Stefan

(C): Jochen

(B): Nicole

(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
(phy(S) ∧ chi(J)) ∨ (chi(S) ∧ phy(J)). For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J), which with (*) entails
¬inf(S) ∧ ¬inf(J). With 2b., the latter entails inf(N).
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(B): Nicole

(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
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(phy(S) ∧ chi(J)) ∨ (chi(S) ∧ phy(J)). For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J), which with (*) entails
¬inf(S) ∧ ¬inf(J). With 2b., the latter entails inf(N).
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bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
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informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.

Question!

Who studies informatics?
(A): Stefan

(C): Jochen
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(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
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For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J), which with (*) entails
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informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.
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Who studies informatics?
(A): Stefan

(C): Jochen
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(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
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¬inf(S) ∧ ¬inf(J). With 2b., the latter entails inf(N).
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contained in black (bla), red (red), and green (gre). 2a. Their study subjects are contained in

informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.

Question!

Who studies informatics?
(A): Stefan

(C): Jochen

(B): Nicole

(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
(phy(S) ∧ chi(J)) ∨ (chi(S) ∧ phy(J)). For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J),

which with (*) entails
¬inf(S) ∧ ¬inf(J). With 2b., the latter entails inf(N).
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Questionnaire

There are three persons, Stefan (S), Nicole (N), and Jochen (J). 1. Their hair colors are

contained in black (bla), red (red), and green (gre). 2a. Their study subjects are contained in

informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.

Question!

Who studies informatics?
(A): Stefan

(C): Jochen

(B): Nicole

(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
(phy(S) ∧ chi(J)) ∨ (chi(S) ∧ phy(J)). For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J), which with (*) entails
¬inf(S) ∧ ¬inf(J).

With 2b., the latter entails inf(N).

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 19/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Questionnaire

There are three persons, Stefan (S), Nicole (N), and Jochen (J). 1. Their hair colors are

contained in black (bla), red (red), and green (gre). 2a. Their study subjects are contained in

informatics (inf), physics (phy), chinese (chi) (or combinations thereof); 2b. at least one

studies informatics. 3. Persons with red or green hair do not study informatics. 4. Neither the

physics nor the chinese students have black hair. 5. Of the two male persons, one studies

physics, and the other studies chinese.

Question!

Who studies informatics?
(A): Stefan

(C): Jochen

(B): Nicole

(D): Nobody

→ You can solve this using propositional logic. For every x ∈ {S,N, J} we know that: 1.
bla(x) ∨ red(x) ∨ gre(x); 2a. inf(x) ∨ phy(x) ∨ chi(x); 3. inf(x) → ¬red(x) ∧ ¬gre(x); 4.
phy(x) → ¬bla(x) and chi(x) → ¬bla(x). Further, 2b. inf(S) ∨ inf(N) ∨ inf(J) and 5.
(phy(S) ∧ chi(J)) ∨ (chi(S) ∧ phy(J)). For every x ∈ {S,N, J}, 1. and 3. entail (*)
inf(x) → bla(x). 4. and 5. together entail ¬bla(S) ∧ ¬bla(J), which with (*) entails
¬inf(S) ∧ ¬inf(J). With 2b., the latter entails inf(N).
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Normal Forms

The two quintessential normal forms: (there are others as well)

A formula is in conjunctive normal form (CNF) if it consists of a
conjunction of disjunctions of literals:

n∧
i=1

mi∨
j=1

li,j



A formula is in disjunctive normal form (DNF) if it consists of a
disjunction of conjunctions of literals:

n∨
i=1

mi∧
j=1

li,j



→ Every formula has equivalent formulas in CNF and DNF.
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Transformation to Normal Form

CNF Transformation (DNF Transformation: Analogously)

Exploit the equivalences:
1 (ϕ↔ ψ) ≡ [(ϕ→ ψ) ∧ (ψ → ϕ)] (Eliminate “↔”)

2 (ϕ→ ψ) ≡ (¬ϕ ∨ ψ) (Eliminate “→”)

3 ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) (Move “¬” inwards)

4 [(ϕ1 ∧ ϕ2) ∨ (ψ1 ∧ ψ2)] ≡ [(ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ1) ∧ (ϕ1 ∨ ψ2) ∧ (ϕ2 ∨ ψ2)]
(Distribute “∨” over “∧”)

Example: ((P ∨H) ∧ ¬H)→ P (Blackboard).

→ Note: The formula may grow exponentially! (“Distribute” step)

→ However, satisfiability-preserving CNF transformation is polynomial!

→ Given a propositional formula ϕ, we can in polynomial time construct
a CNF formula ψ that is satisfiable if and only if ϕ is. (Proof omitted)
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Questionnaire

Question!

A CNF formula is . . .
(A): Valid iff at least one

disjunction is valid.

(C): Satisfiable if at least one
disjunction is satisfiable.

(B): Valid iff every disjunction is
valid.

(D): Satisfiable if every
disjunction is satisfiable.

→ (A): No, other parts of the global conjunction may be false under any one
given interpretation.

→ (B): Yes: The CNF is a conjunction of valid formulas, so is valid itself.
(Compare the CNF transformation of the example formula on slide 21).

→ (C): No since we need all disjuncts to be satisfied together.

→ (D): No since we need all disjuncts to be satisfied together by the same
interpretation.
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2 Propositional Logic

3 Resolution

4 Killing a Wumpus

5 Conclusion
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Deduction

Remember (slide 5)? Our knowledge of the cave entails a definite Wumpus
position! → But how to find out about this?

Deduction!

Basic Concepts in Deduction

Inference rule: Rule prescribing how we can infer new formulas.

→ For example, if the KB is {. . . , (ϕ→ ψ), . . . , ϕ, . . .} then ψ can be

deduced using the inference rule
ϕ,ϕ→ ψ

ψ
.

Calculus: Set R of inference rules.

Derivation: ϕ can be derived from KB using R, KB `R ϕ, if starting from
KB there is a sequence of applications of rules from R, ending in ϕ.

Soundness: R is sound if all derivable formulas do follow logically: if
KB `R ϕ, then KB |= ϕ.

Completeness: R is complete if all formulas that follow logically are
derivable: if KB |= ϕ, then KB `R ϕ.

→ If R is sound and complete, then to check whether KB |= ϕ, we can check
whether KB `R ϕ.
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Resolution: Quick Facts

Input: A CNF formula ψ.

Method: Calculus consisting of a single rule, allowing to produce
disjunctions using fewer variables. We write ψ ` ϕ if ϕ can be derived
from ψ using resolution.

Output: Can an impossible ϕ (the empty disjunction) be derived?
“Yes”/”No”, where “yes” happens iff ψ is unsatisfiable.

→ So how do we check whether KB |= ϕ?

Proof by contradiction (cf. slide 17): Run resolution on ψ :=
CNF-transformation(KB ∪ {¬ϕ}). By the contradiction theorem, ψ is
unsatisfiable iff KB |= ϕ.

→ Deduction can be reduced to proving unsatisfiability: “Assume, to the
contrary, that KB holds but ϕ does not hold; then derive False”.
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Resolution: Conventions

→ For the remainder of this chapter, we assume that the input is a set ∆
of clauses: (The same will be assumed in Chapter 11)

Terminology and Notation

A literal l is an atom or the negation thereof (e.g., P,¬Q); the
negation of a literal is denoted l (e.g., ¬Q = Q).

A clause C is a disjunction of literals. We identify C with the set of
its literals (e.g., P ∨ ¬Q becomes {P,¬Q}).

We identify a CNF formula ψ with the set ∆ of its clauses (e.g.,
(P ∨ ¬Q) ∧R becomes {{P,¬Q}, {R}}).

The empty clause is denoted �.

→ An interpretation I satisfies a clause C iff there exists l ∈ C such that
I |= l. I satisfies ∆ iff, for all C ∈ ∆, we have I |= C.
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Resolution Conventions: Rim Cases

It’s normally simple . . .

E.g., I with I(P ) = 0, I(Q) = 0, I(R) = 0 does not satisfy
∆ = {{P,¬Q}, {R}}.

. . . but can be confusing in the “rim cases”:

Does there exist I so that I |= �? No, there exists no literal l ∈ �
that we can satisfy.

With ∆ = {�}, does there exist I so that I |= ∆? No, because we
can’t satisfy �.

With ∆ = {}, does there exist I so that I |= ∆? Yes, because I
satisfies all clauses C ∈ ∆ (trivial as there is no clause in ∆).
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The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to

{P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.
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Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?

No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule
(with exclusive union ∪̇ meaning that the two sets are disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule allows to
add the resolvent clause C1 ∪ C2. l and l are called the resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one literal in
C1 ∪ C2 true.

Theorem (Soundness). If ∆ ` D, then ∆ |= D. (Direct from Lemma.)

→ What about the other direction? Is the resolvent equivalent to its parents?
No, because to satisfy the resolvent it is enough to satisfy one of C1, C2. E.g.:
Setting I(P ) = 0 and I(Q) = 1, we satisfy {P,Q} but do not satisfy {P,¬R}
when setting the resolution literal to I(R) = 1.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 28/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Using Resolution: A Simple Example

Input: KB = {Q→ ¬P,¬P → (¬Q ∨ ¬R ∨ ¬S),¬Q→ ¬S,¬R→ ¬S}
φ = ¬S

Question: Do we have KB |= φ?

Step 1: Transform KB and ¬φ into CNF.

KB ≡ (¬Q ∨ ¬P ) ∧ (P ∨ ¬Q ∨ ¬R ∨ ¬S) ∧ (Q ∨ ¬S) ∧ (R ∨ ¬S)

¬φ = S

Step 2: Write as set of clauses ∆.

∆ = {{¬Q,¬P}, {P,¬Q,¬R,¬S}, {Q,¬S}, {R,¬S}, {S}}
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Using Resolution: A Simple Example

Step 3: Derive � by applying the resolution rule.

{P}

{R}

{¬Q}

{P,¬R}

{P,¬Q,¬R} {Q}

{R,¬S}{Q,¬S}{P,¬Q,¬R,¬S}{¬Q,¬P}

�

{S}
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Using Resolution: A Frequent Mistake

Question: Given clauses C1∪̇{P,Q} and C2∪̇{¬P,¬Q}, can we resolve
them to C1 ∪ C2?

Answer: NO!

Observation 1: Consider ∆ = {{P,Q}, {¬P,¬Q}}, and assume we
were able to resolve as above. Then we could derive the empty clause.

However, ∆ is satisfiable (e.g. P := T,Q := F ), so this deduction would
be unsound.

Observation 2: The proof of the lemma on slide 28 is not valid for the
hypothetical resolution of C1∪̇{P,Q} and C2∪̇{¬P,¬Q} to C1 ∪ C2.

This is due to Observation 1: An interpretation can set, e.g.,
P := T,Q := F , satisfying both {P,Q} and {¬P,¬Q} together,
avoiding the need to satisfy either of C1 or C2.
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Completeness

Is resolution complete? Does ∆ |= ϕ imply ∆ ` ϕ?

→ No. Example: {{P,Q}, {¬Q,R}} |= {P,R, S} but
{{P,Q}, {¬Q,R}} 6` {P,R, S}.

BUT remember: “Run resolution on ψ :=
CNF-transformation(KB ∪ {¬ϕ}): By the contradiction theorem, ψ is
unsatisfiable iff KB |= ϕ.”

→ This method is complete, see next slide.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 31/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Completeness

Is resolution complete? Does ∆ |= ϕ imply ∆ ` ϕ?
→ No. Example: {{P,Q}, {¬Q,R}} |= {P,R, S} but
{{P,Q}, {¬Q,R}} 6` {P,R, S}.

BUT remember: “Run resolution on ψ :=
CNF-transformation(KB ∪ {¬ϕ}): By the contradiction theorem, ψ is
unsatisfiable iff KB |= ϕ.”

→ This method is complete, see next slide.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 31/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Completeness

Is resolution complete? Does ∆ |= ϕ imply ∆ ` ϕ?
→ No. Example: {{P,Q}, {¬Q,R}} |= {P,R, S} but
{{P,Q}, {¬Q,R}} 6` {P,R, S}.

BUT remember: “Run resolution on ψ :=
CNF-transformation(KB ∪ {¬ϕ}): By the contradiction theorem, ψ is
unsatisfiable iff KB |= ϕ.”

→ This method is complete, see next slide.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 31/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Completeness

Is resolution complete? Does ∆ |= ϕ imply ∆ ` ϕ?
→ No. Example: {{P,Q}, {¬Q,R}} |= {P,R, S} but
{{P,Q}, {¬Q,R}} 6` {P,R, S}.

BUT remember: “Run resolution on ψ :=
CNF-transformation(KB ∪ {¬ϕ}): By the contradiction theorem, ψ is
unsatisfiable iff KB |= ϕ.”

→ This method is complete, see next slide.

Koehler and Torralba Artificial Intelligence Chapter 5: Propositional Reasoning, Part I 31/46



Introduction Propositional Logic Resolution Wumpus Conclusion References

Refutation-Completeness

Theorem (Refutation-Completeness). ∆ is unsatisfiable iff ∆ ` �.

Proof. “If”: Soundness. For “only if”, we prove that, if ∆ 6` �, then ∆ is
satisfiable.

Say Σ = {P1, . . . , Pn}. Denote by RC(∆) := {C | ∆ ` C} the set of all clauses
derivable from ∆. Note that ∆ ` � is the same as � ∈ RC(∆).

Consider the algorithm attempting to construct an interpretation I, as follows:
Start with I = ∅; for i := 1, . . . , n: (a) let I ′ := I ∪ {Pi 7→ 1}; if RC(∆) does
not contain a clause C s.t. C uses no variables outside {P1, . . . , Pi} and is not
satisfied by I ′ (i.e., C is empty under I ′), let I := I ′; else (b) let
I ′ := I ∪ {Pi 7→ 0}; if RC(∆) does not contain a clause C as in (a), let I := I ′;
else (c) fail. (In short: greedy value selection, no backtracking.)

We denote by Ij the assignment after iteration j.

Observe: With � ∈ RC(∆), the algorithm fails at P1 due to C := �.
With � 6∈ RC(∆), if the algorithm succeeds up to Pj , then (*) Ij satisfies all
clauses from RC(∆) using no variables outside {P1, . . . , Pj}.
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Refutation-Completeness, Proof Continued

Reminder: With � ∈ RC(∆), the algorithm fails at P1 due to C := �. With
� 6∈ RC(∆), if the algorithm succeeds up to Pj , then (*) Ij satisfies all clauses
from RC(∆) using no variables outside {P1, . . . , Pj}.

Say that � 6∈ RC(∆). We prove that the algorithm succeeds up to Pn, so with
(*) returns a satisfying assignment for ∆. Assume to the contrary that the
algorithm fails at Pi.

By construction, there must be C(a), C(b) ∈ RC(∆), using no variables outside
{P1, . . . , Pi}, where (**) C(a) is not satisfied by Ii−1 ∪ {Pi 7→ 1} and C(b) is
not satisfied by Ii−1 ∪ {Pi 7→ 0}. With (*) applied to j = i− 1, C(a) and C(b)

must use the variable Pi. Hence, ¬Pi ∈ C(a) and Pi ∈ C(b).

Let C(ab) be the resolvent of C(a) and C(b). Then C(ab) ∈ RC(∆). Further,
C(ab) uses no variables outside {P1, . . . , Pi−1}. Hence, by (*), Ii−1 satisfies
C(ab). This is in direct contradiction to (**), showing the claim.

→ If � 6∈ RC(∆), then greedy value selection based on RC(∆) will
necessarily find a satisfying assignment.
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Reminder: With � ∈ RC(∆), the algorithm fails at P1 due to C := �. With
� 6∈ RC(∆), if the algorithm succeeds up to Pj , then (*) Ij satisfies all clauses
from RC(∆) using no variables outside {P1, . . . , Pj}.
Say that � 6∈ RC(∆). We prove that the algorithm succeeds up to Pn, so with
(*) returns a satisfying assignment for ∆. Assume to the contrary that the
algorithm fails at Pi.
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Questionnaire

Question!

What are resolvents of {P,¬Q,R} and {¬P,Q,R}?
(A): {Q,¬Q,P,R}.
(C): {R}.

(B): {P,¬P,R, S}.
(D): {Q,¬Q,R}.

→ (A): No. If we resolve on P then it disappears completely.

→ (B): No. By resolving on Q we get this clause except S, and although the
larger clause always is sound as well of course, we are not allowed to deduce it
by the rule.

→ (C): No. If we resolve on P then we get both Q and ¬Q into the clause,
similar if we resolve on Q.
→ We can resolve on only ONE literal at a time, cf. slide 30.

→ (D): Yes, this is what we get by resolving on P .
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Agenda

1 Introduction

2 Propositional Logic

3 Resolution

4 Killing a Wumpus

5 Conclusion
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Where is the Wumpus? Our Knowledge

→ We worry only about the Wumpus and Stench . . .

Si,j = Stench in (i, j), Wi,j = Wumpus in (i, j).

Propositions whose value we know:

¬S1,1, ¬W1,1, ¬S2,1, ¬W2,1, S1,2, ¬W1,2

Knowledge about the wumpus and smell: From “Cell adjacent to
Wumpus: Stench (else: None)”, we get, amongst many others:

R1 : ¬S1,1 → ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1

R2 : ¬S2,1 → ¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1

R3 : ¬S1,2 → ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3

R4 : S1,2 →W1,3 ∨W2,2 ∨W1,1

To show: KB |= W1,3
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And Now Using Resolution Conventions

→ Consider ∆ composed of the following clauses:

Propositions whose value we know:

{¬S1,1}, {¬W1,1}, {¬S2,1}, {¬W2,1}, {S1,2}, {¬W1,2}

Knowledge about the wumpus and smell:

R1 : {S1,1,¬W1,1}, {S1,1,¬W1,2}, {S1,1,¬W2,1}
R2 : {S2,1,¬W1,1}, {S2,1,¬W2,1}, {S2,1,¬W2,2}, {S2,1,¬W3,1}
R3 : {S1,2,¬W1,1}, {S1,2,¬W1,2}, {S1,2,¬W2,2}, {S1,2,¬W1,3}
R4 : {¬S1,2,W1,3,W2,2,W1,1}

Negated goal formula: {¬W1,3}
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Resolution Proof Killing the Wumpus!

Derivation proving that the Wumpus is in (1, 3):

“Assume the Wumpus is not in (1, 3). Then either there’s no stench in
(1, 2), or the Wumpus is in some other neigbor cell of (1, 2).”

Parents: {¬W1,3} and {¬S1,2,W1,3,W2,2,W1,1}.
→ Resolvent: {¬S1,2,W2,2,W1,1}.

“There’s a stench in (1, 2), so it must be another neighbor.”

Parents: {S1,2} and {¬S1,2,W2,2,W1,1}.
→ Resolvent: {W2,2,W1,1}.

“We’ve been to (1, 1), and there’s no Wumpus there, so it can’t be (1, 1).”

Parents: {¬W1,1} and {W2,2,W1,1}. → Resolvent: {W2,2}.

“There is no stench in (2, 1) so it can’t be (2, 2) either, in contradiction.”

Parents: {¬S2,1} and {S2,1,¬W2,2}. → Resolvent: {¬W2,2}.
Parents: {¬W2,2} and {W2,2}. → Resolvent: �.
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Questionnaire

Question!

Do there exist “failed” Wumpus problems, where we can find a
solution without risking death, but resolution is not strong enough
for the reasoning required?

(A): Yes (B): No

→ No, because resolution is (refutation-)complete: Everything that can be concluded
at all, can be concluded using resolution.

Question!

Do there exist “unsafe” Wumpus problems, that are solvable but
where we cannot find the solution without risking death?

(A): Yes (B): No

→ Yes: See an example on the next slide.
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Answer to 2nd Question from Previous Slide

Yes. For example this one:
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Agenda

1 Introduction

2 Propositional Logic

3 Resolution

4 Killing a Wumpus

5 Conclusion
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Summary

Sometimes, it pays off to think before acting.

In AI, “thinking” is implemented in terms of reasoning in order to deduce
new knowledge from a knowledge base represented in a suitable logic.

Logic prescribes a syntax for formulas, as well as a semantics prescribing
which interpretations satisfy them. ϕ entails ψ if all interpetations that
satisfy ϕ also satisfy ψ. Deduction is the process of deriving new entailed
formulas.

Propositional logic formulas are built from atomic propositions, with the
connectives “and, or, not”.

Every propositional formula can be brought into conjunctive normal form
(CNF), which can be identified with a set of clauses.

Resolution is a deduction procedure based on trying to derive the empty
clause. It is refutation-complete, and can be used to prove KB |= ϕ by
showing that KB ∪ {¬ϕ} is unsatisfiable.
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Issues with Propositional Logic

Awkward to write for humans: E.g., to model the Wumpus world we
had to make a copy of the rules for every cell . . .

R1 : ¬S1,1 → ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1

R2 : ¬S2,1 → ¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1

R3 : ¬S1,2 → ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3

Compared to “Cell adjacent to Wumpus: Stench (else: None)”, that is
not a very nice description language . . .

Can we design a more human-like logic? Yep:

Predicate logic: Quantification of variables ranging over objects.
→ Chapters 12 and 13

. . . and a whole zoo of logics much more powerful still.

Note: In applications, propositional CNF encodings are generated by
computer programs. This mitigates (but does not remove!) the
inconveniences of propositional modeling.
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not a very nice description language . . .

Can we design a more human-like logic? Yep:

Predicate logic: Quantification of variables ranging over objects.
→ Chapters 12 and 13

. . . and a whole zoo of logics much more powerful still.

Note: In applications, propositional CNF encodings are generated by
computer programs. This mitigates (but does not remove!) the
inconveniences of propositional modeling.
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Reading

Chapter 7: Logical Agents, Sections 7.1 – 7.5 [Russell and Norvig (2010)].

Content: Sections 7.1 and 7.2 roughly correspond to my “Introduction”,
Section 7.3 roughly corresponds to my “Logic (in AI)”, Section 7.4 roughly
corresponds to my “Propositional Logic”, Section 7.5 roughly corresponds
to my “Resolution” and “Killing a Wumpus”.

Overall, the content is quite similar. I have tried to add some additional
clarifying illustrations. RN gives many complementary explanations, nice as
additional background reading.

I would note that RN’s presentation of resolution seems a bit awkward,
and Section 7.5 contains some additional material that is imho not
interesting (alternate inference rules, forward and backward chaining).
Horn clauses and unit resolution (also in Section 7.5), on the other hand,
are quite relevant.
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