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Reminder: Our Agenda for This Topic

→ Our treatment of the topic “Probabilistic Reasoning” consists of
Chapters 15 and 16.

Chapter 15: All the basic machinery at use in Bayesian networks.

→ Sets up the framework and basic operations.

This Chapter: Bayesian networks: What they are, how to build
them, how to use them.

→ The most wide-spread and successful practical framework for
probabilistic reasoning.
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Reminder: Our Machinery

1. Graph captures variable dependencies: (Variables X1, . . . , Xn)

Toothache Catch

Cavity

→ Given evidence e, want to know P(X | e). Remaining vars: Y.

2. Normalization+Marginalization:
P(X | e) = αP(X, e) = α

∑
y∈Y P(X, e,y)

→ A sum over atomic events!

3. Chain rule: X1, . . . , Xn consistently with dependency graph.
P(X1, . . . , Xn) = P(Xn | Xn−1, . . . , X1)∗P(Xn−1 | Xn−2, . . . , X1)∗· · ·∗P(X1)

4. Exploit conditional independence: Instead of P(Xi | Xi−1, . . . , X1),
we can use P(Xi | Parents(Xi)).

→ Bayesian networks!
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Some Applications
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Our Agenda for This Chapter

What is a Bayesian Network? What is the syntax?

→ Tells you what Bayesian networks look like.

What is the Meaning of a Bayesian Network? What is the semantics?

→ Makes the intuitive meaning precise.

Constructing Bayesian Networks: How do we design these networks?
What effect do our choices have on their size?

→ Before you can start doing inference, you need to model your domain.

Inference in Bayesian Networks: How do we use these networks? What
is the associated complexity?

→ Inference is our primary purpose. We (very) briefly analyze its
complexity and how it can be improved.
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What is a Bayesian Network? (Short: BN)

“A Bayesian network is a methodology for representing the full joint
probability distribution. In some cases, that representation is compact.”

“A Bayesian network is an acyclic directed graph whose nodes are
random variables Xi and whose edges Xj → Xi denote a direct influence
of Xj on Xi. Each node Xi is associated with a conditional probability

table (CPT), specifying P(Xi | Parents(Xi)).”

“A Bayesian network is a graphical way to depict conditional
independence relations within a set of random variables.”

→ A Bayesian network (BN) represents the structure of a given domain.
Probabilistic inference exploits that structure for improved efficiency.

→ BN inference: Determine the distribution of a query variable X given
observed evidence e: P(X | e).
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John, Mary, and My Brand-New Alarm

Example

I got very valuable stuff at home. So I bought an alarm. Unfortunately,
the alarm just rings at home, doesn’t call me on my mobile. I’ve got two
neighbors, Mary and John, who’ll call me if they hear the alarm. The
problem is that, sometimes, the alarm is caused by an earthquake. Also,
John might confuse the alarm with his telephone, and Maria might miss
the alarm altogether because she typically listens to loud music.

Question: Given that both John and Mary call me, what is the
probability of a burglary?
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John, Mary, and My Alarm: Designing the BN

Cooking Recipe: (1) Design the random variables X1, . . . , Xn; (2)
Identify their dependencies; (3) Insert the conditional probability tables
P(Xi | Parents(Xi)).

Example: Let’s cook!

(1) Random variables: Burglary , Earthquake, Alarm, JohnCalls,
MaryCalls. (All Boolean)

(2) Dependencies:

(3) Conditional probability tables: Assess the probabilities, see next
slide.
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John, Mary, and My Alarm: The BN
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Note: In each P(Xi | Parents(Xi)), we show only
P(Xi = true | Parents(Xi)). We don’t show P(Xi = false | Parents(Xi))
which is = 1−P(Xi = true | Parents(Xi)).
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The Syntax of Bayesian Networks
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Definition (Bayesian Network). Given random variables X1, . . . , Xn

with finite domains D1, . . . , Dn, a Bayesian network is an acyclic directed
graph BN = ({X1, . . . , Xn}, E). We denote
Parents(Xi) := {Xj | (Xj , Xi) ∈ E}. Each Xi is associated with a
function CPT (Xi) : Di × ("Xj∈Parents(Xi)Dj) 7→ [0, 1].

[→ Why “acyclic”? Slide 19 (*) P(X1, . . . , Xn) = Πn
i=1P(Xi | Parents(Xi)). By (*),

acyclic BN suffice to represent any full joint probability distribution. But for cyclic
BN , (*) does NOT hold, indeed cyclic BNs may be self-contradictory.]
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The Semantics of BNs: Example

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

Alarm depends on Burglary and Earthquake.

MaryCalls only depends on Alarm.
P (MaryCalls | Alarm,Burglary) = P (MaryCalls | Alarm)

→ Bayesian networks represent sets of independence assumptions.
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The Semantics of BNs: General Case

→ Each node X in a BN is conditionally independent of its
non-descendants given its parents Parents(X).

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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The Semantics of BNs: Example, ctd.

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

→ Given the value of Alarm, MaryCalls is independent of?

Koehler and Torralba Artificial Intelligence Chapter 16: Probabilistic Reasoning, Part II 17/44



Introduction BN Syntax BN Semantics Constructing BNs Inference in BNs Conclusion References

The Semantics of BNs: Formal
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Definition. Given a Bayesian network BN = ({X1, . . . , Xn}, E), we
identify BN with the following two assumptions:
(A) For 1 ≤ i ≤ n, Xi is conditionally independent of

NonDescendants(Xi) given Parents(Xi), where
NonDescendants(Xi) := {Xj | (Xi, Xj) 6∈ E∗} \ Parents(Xi) with
E∗ denoting the transitive closure of E.

(B) For 1 ≤ i ≤ n, all values xi of Xi, and all value combinations
parents(Xi) of Parents(Xi), we have
P (xi | parents(Xi)) = CPT (xi, parents(Xi)).
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Recovering the Full Joint Probability Distribution

“A Bayesian network is a methodology for representing the full joint
probability distribution.”

→ How to recover the full joint probability distribution P(X1, . . . , Xn)
from BN = ({X1, . . . , Xn}, E)?

Chain rule: For any ordering X1, . . . , Xn, we have:

P(X1, . . . , Xn) = P(Xn | Xn−1, . . . , X1)P(Xn−1 | Xn−2, . . . , X1) . . .P(X1)

Choose X1, . . . , Xn consistent with BN : Xj ∈ Parents(Xi) =⇒ j < i.

Exploit conditional independence: With BN assumption (A), instead
of P(Xi | Xi−1 . . . , X1) we can use P(Xi | Parents(Xi)):

P(X1, . . . , Xn) = Πn
i=1P(Xi | Parents(Xi))

The distributions P(Xi | Parents(Xi)) are given by BN assumption (B).

→ Same for atomic events P (x1, . . . , xn).

Koehler and Torralba Artificial Intelligence Chapter 16: Probabilistic Reasoning, Part II 19/44



Introduction BN Syntax BN Semantics Constructing BNs Inference in BNs Conclusion References

Recovering a Probability for John, Mary, and the Alarm
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P (j,m, a,¬b,¬e) =
=
=
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Questionnaire

Animal

LoudNoise LikesChappi

Question!

Say BN is the Bayesian network above. Which statements are correct?

(A): Animal is independent of
LikesChappi .

(C): Animal is conditionally
independent of LikesChappi
given LoudNoise.

(B): LoudNoise is independent of
LikesChappi .

(D): LikesChappi is conditionally
independent of LoudNoise
given Animal .
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Constructing Bayesian Networks

BN construction algorithm:

1. Initialize BN := ({X1, . . . , Xn}, E) where E = ∅.
2. Fix any order of the variables, X1, . . . , Xn.
3. for i := 1, . . . , n do

a. Choose a minimal set Parents(Xi) ⊆ {X1, . . . , Xi−1} so that
P(Xi | Xi−1 . . . , X1) = P(Xi | Parents(Xi)).

b. For each Xj ∈ Parents(Xi), insert (Xj , Xi) into E.
c. Associate Xi with CPT (Xi) corresponding to P(Xi | Parents(Xi)).

Attention! Which variables we need to include into Parents(Xi)
depends on what “{X1, . . . , Xi−1}” is . . . !

→ The size of the resulting BN depends on the chosen order X1, . . . , Xn.

→ The size of a Bayesian network is not a fixed property of the domain.
It depends on the skill of the designer.
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John and Mary Depend on the Variable Order!

Example: MaryCalls, JohnCalls,Alarm,Burglary ,Earthquake.
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John and Mary Depend on the Variable Order! Ctd.

Example: MaryCalls, JohnCalls,Earthquake,Burglary ,Alarm.
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John and Mary, What Went Wrong?

→ These BNs link from symptoms to causes! (P(Cavity | Toothache))

We fail to identify many conditional independence relations (e.g.,
get dependencies between conditionally independent symptoms).

Also recall: Conditional probabilities P(Symptom | Cause) are
more robust and often easier to assess than P(Cause | Symptom).

→ We should order causes before symptoms.
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The Size of Bayesian Networks

Definition. Given random variables X1, . . . , Xn with finite domains
D1, . . . , Dn, the size of BN = ({X1, . . . , Xn}, E) is defined as
size(BN) :=

∑n
i=1 |Di| ∗ΠXj∈Parents(Xi)|Dj |. (= The total number of

entries in the CPTs.)

→ Smaller BN =⇒ assess less probabilities, more efficient inference.

Explicit full joint probability distribution has size Πn
i=1|Di|.

If |Parents(Xi)| ≤ k for every Xi, and Dmax is the largest variable
domain, then size(BN) ≤ n ∗ |Dmax|k+1.
→ For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576
probabilities, but a Bayesian network of size ≤ 20 ∗ 25 = 640 . . . !

In the worst case, size(BN) =
∑n

i=1 Πi
j=1|Di|, namely if

→ BNs are compact if each variable is directly influenced only by few of
its predecessor variables.
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Questionnaire

Question!

What is the Bayesian network we get by constructing according to the
ordering X1 = LoudNoise,X2 = Animal,X3 = LikesChappi?

Question!

What is the Bayesian network we get by constructing according to the
ordering X1 = LoudNoise,X2 = LikesChappi,X3 = Animal?

Koehler and Torralba Artificial Intelligence Chapter 16: Probabilistic Reasoning, Part II 28/44



Introduction BN Syntax BN Semantics Constructing BNs Inference in BNs Conclusion References

Inference for Mary and John

→ Observe evidence variables and draw conclusions on query variables.
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What is P(Burglary | johncalls)?

What is P(Burglary | johncalls,marycalls)?
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Probabilistic Inference Tasks in Bayesian Networks

Definition (Probabilistic Inference Task). Given random variables
X1, . . . , Xn, a probabilistic inference task consists of a set
X ⊆ {X1, . . . , Xn} of query variables, a set E ⊆ {X1, . . . , Xn} of
evidence variables, and an event e that assigns values to E. We wish to
compute the posterior probability distribution P(X | e).

Notes:

Y := {X1, . . . , Xn} \ (X ∪E) are the hidden variables.

We assume that a BN for X1, . . . , Xn is given.

In the remainder, for simplicity, X = {X} is a singleton.

Example: In P(Burglary | johncalls,marycalls), X = Burglary ,
e = johncalls,marycalls, and Y = {Alarm,EarthQuake}.
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Inference by Enumeration: The Principle (A Reminder!)

Given evidence e, want to know P(X | e). Hidden variables: Y.

1. Bayesian network BN captures variable dependencies.

2. Normalization+Marginalization.

P(X | e) = αP(X, e); if Y 6= ∅ then P(X | e) = α
∑

y∈Y P(X, e,y)

→ Recover the summed-up probabilities P(X, e,y) from BN !

3. Chain rule. Order X1, . . . , Xn consistent with BN .

P(X1, . . . , Xn) = P(Xn | Xn−1, . . . , X1)P(Xn−1 | Xn−2, . . . , X1) . . .P(X1)

4. Exploit conditional independence. Instead of
P(Xi | Xi−1, . . . , X1), use P(Xi | Parents(Xi)).

→ Given a Bayesian network BN , probabilistic inference tasks can be
solved as sums of products of conditional probabilities from BN .

→ Sum over all value combinations of hidden variables.
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Inference by Enumeration: John and Mary
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Inference by Enumeration: John and Mary, ctd.
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The Evaluation of P (b | j,m), as a “Search Tree”

→ Inference by enumeration = a tree with “sum nodes” branching over values
of hidden variables, and with non-branching “multiplication nodes”.

Koehler and Torralba Artificial Intelligence Chapter 16: Probabilistic Reasoning, Part II 35/44



Introduction BN Syntax BN Semantics Constructing BNs Inference in BNs Conclusion References

Inference by Enumeration: Pseudo-Code

→ With bn.Vars being a variable ordering consistent with bn:

14 PROBABILISTIC
REASONING

function ENUMERATION-ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayes net with variables{X} ∪ E ∪ Y /* Y = hidden variables*/

Q(X )← a distribution overX , initially empty
for each valuexi of X do

Q(xi)← ENUMERATE-ALL(bn.VARS,exi )
whereexi is e extended withX = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars ,e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has valuey in e

then return P (y | parents(Y )) × ENUMERATE-ALL(REST(vars),e)
else return

P

y P (y | parents(Y )) × ENUMERATE-ALL(REST(vars),ey)
whereey is e extended withY = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

function ELIMINATION -ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayesian network specifying joint distributionP(X1, . . . ,Xn)

factors← [ ]
for each var in ORDER(bn.VARS) do

factors← [MAKE-FACTOR(var , e)|factors ]
if var is a hidden variablethen factors←SUM-OUT(var , factors )

return NORMALIZE(POINTWISE-PRODUCT(factors ))

Figure 14.10 The variable elimination algorithm for inference in Bayesian networks.

33
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Inference by Enumeration: Properties

Inference by Enumeration:

Evaluates the tree in a depth-first manner.

Space Complexity: Linear in the number of variables.

Time Complexity:

Bad News: Not in general.

Probabilistic inference is #P-hard.

#P is harder than NP (i.e., NP ⊆ #P).

But: Variable Elimination.

Improves on inference by enumeration through (A) avoiding
repeated computation, and (B) avoiding irrelevant computation.

In some special cases, variable elimination runs in polynomial time.
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Variable Elimination: Sketch of Ideas

(A) Avoiding repeated computation: Evaluate expressions from right
to left, storing all intermediate results. For query P (B | j,m):

1 CPTs of BN yield factors (probability tables): P(B | j,m) =

αP(B)︸ ︷︷ ︸
f1(B)

∑
vE
P (vE)︸ ︷︷ ︸
f2(E)

∑
vA

P(vA | B, vE)︸ ︷︷ ︸
f3(A,B,E)

P (j | vA)︸ ︷︷ ︸
f4(A)

P (m | vA)︸ ︷︷ ︸
f5(A)

2 Then the computation is performed in terms of factor product and
summing out variables from factors: P(B | j,m) =

α f1(B)×
∑

vE
f2(E)×

∑
vA

f3(A,B,E)×f4(A)×f5(A)

(B) Avoiding irrelevant computation: Repeatedly remove hidden
variables that are leaf nodes. For query P (JohnCalls | burglary):

P(J | b) = αP (b)
∑

vE
P (vE)

∑
vA
P (vA | b, vE)P(J | vA)

∑
vM

P (vM | vA)

→ The rightmost sum equals 1 and can be dropped.
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Variable Elimination Runtime

An important easy case:

A graph is called singly connected, or a polytree, if there is at most
one undirected path between any two nodes in the graph.

On polytree Bayesian networks, variable elimination runs in
polynomial time.

→ Is our BN for Mary & John a polytree?
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Summary

Bayesian networks (BN) are a wide-spread tool to model uncertainty, and
to reason about it. A BN represents conditional independence relations
between random variables. It consists of a graph encoding the variable
dependencies, and of conditional probability tables (CPTs).

Given a variable order, the BN is small if every variable depends on only a
few of its predecessors.

Probabilistic inference requires to compute the probability distribution of a
set of query variables, given a set of evidence variables whose values we
know. The remaining variables are hidden.

Inference by enumeration takes a BN as input, then applies
Normalization+Marginalization, the Chain rule, and exploits conditional
independence. This can be viewed as a tree search that branches over all
values of the hidden variables.

Variable elimination avoids unnecessary computation. It runs in polynomial
time for poly-tree BNs. In general, exact probabilistic inference is
#P-hard. Approximate probabilistic inference methods exist.
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Topics We Didn’t Cover Here

Inference by sampling: A whole zoo of methods for doing this exists.

Clustering: Pre-combining subsets of variables to reduce the runtime of
inference.

Compilation to SAT: More precisely, to “weighted model counting” in CNF
formulas. Model counting extends DPLL with the ability to determine the
number of satisfying interpretations. Weighted model counting allows to
define a mass for each such interpretation (= the probability of an atomic
event).

Dynamic BN: BN with one slice of variables at each “time step”, encoding
probabilistic behavior over time.

Relational BN: BN with predicates and object variables.

First-order BN: Relational BN with quantification, i.e., probabilistic logic.
E.g., the BLOG language developed by Stuart Russel and co-workers.
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Reading

Chapter 14: Probabilistic Reasoning [Russell and Norvig (2010)].

Content: Section 14.1 roughly corresponds to my “What is a Bayesian
Network?”.

Section 14.2 roughly corresponds to my “What is the Meaning of a
Bayesian Network?” and “Constructing Bayesian Networks”.The main
change I made here is to define the semantics of the BN in terms of the
conditional independence relations, which I find clearer than RN’s definition
that uses the reconstructed full joint probability distribution instead.

Section 14.4 roughly corresponds to my “Inference in Bayesian Networks”.
RN give full details on variable elimination, which makes for nice ongoing
reading.

Section 14.3 discusses how CPTs are specified in practice. Section 14.5
covers approximate sampling-based inference. Section 14.6 briefly discusses
relational and first-order BNs. Section 14.7 briefly discusses other
approaches to reasoning about uncertainty. All of this is nice as additional
background reading.
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