
Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Artificial Intelligence
3. Classical Search, Part I: Basics, and Blind Search

Got a Problem? Gotta Solve It!

Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Prof. Hoffmann for slide sources

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 1/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Agenda

1 Introduction

2 What (Exactly) Is a “Problem”?

3 How To Put the Problem Into the Computer?

4 Basic Concepts of Search

5 (Non-Trivial) Blind Search Strategies

6 Lookup Section

7 Conclusion

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 2/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Disclaimer

So far, we had a nice philosophical chat about “intelligence” et al.

As of today, we look at technical work.

Naturally, we don’t start with the most complex action-decision
framework. We start with the simplest possible one . . .

(Despite that simplicity, it’s highly relevant in practice!)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 4/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

A (Classical Search) Problem

→ Problem: Find a route to Moscow.

Starting from an initial state . . . (SB)

. . . apply actions . . . (Using a road segment)

. . . to reach a goal state. (Moscow)

Performance measure: Minimize summed-up action costs. (Road
segment lengths)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 5/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Another (Classical Search) Problem (The “15-Puzzle”)

→ Problem: Move tiles to transform left state into right state.

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Starting from an initial state . . . (Left)

. . . apply actions . . . (Moving a tile)

. . . to reach a goal state. (Right)

Performance measure: Minimize summed-up action costs. (Each
move has cost 1, so we minimize the number of moves)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 6/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Classical Search Problems

. . . restrict the agent’s environment to a very simple setting:

Finite numbers of states and actions (in particular: discrete).

Single-agent (nobody else around).

Fully observable (agent knows everything).

Deterministic (each action has only one outcome).

Static (if the agent does nothing, the world doesn’t change).

→ All of these restrictions can be removed, and a lot of work in AI
considers such more general settings. We will talk about some of this in
later chapters (but not in the present one).

→ Classical search problems are one of the simplest classes of action
choice problems an agent can be facing. Despite that simplicity, classical
search problems are very important in practice (see also next slide).

→ And despite that “simplicity”, these problems are computationally
hard! Typically harder than NP . . .

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 7/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Examples of Classical Search Problems

Just to name a few:

Route planning (e.g. Google Maps).

Puzzles (Rubic’s Cube, 15-Puzzle, Towers of Hanoi . . .).

Detecting bugs in software and hardware.

Non-player-characters in computer games.

Travelling Salesman Problem (TSP). Actions = moves in the graph.

Robot assembly sequencing. Planning of the assembly of complex
objects. Actions = robot activities.

Attack planning. Finding a hack into a secured network. Used for
regular security testing. Actions = exploits.

Query optimization in databases. Actions = rewriting operations.

Sequence alignment in Bioinformatics. Actions = re-alignment
operations.

Natural language sentence generation. Actions = add another word
to a partial sentence.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 8/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Our Agenda for This Topic

→ Our treatment of the topic “Classical Search” consists of Chapters 4
and 5.

This Chapter: Basic definitions and concepts; blind search.

→ Sets up the framework. Blind search is ideal to get our feet wet.
It is not wide-spread in practice, but it is among the state of the art
in certain applications (e.g., software model checking).

Chapter 5: Heuristic functions and informed search.

→ Classical search algorithms exploiting the problem-specific
knowledge encoded in a heuristic function. Typically much more
efficient in practice.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 9/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Our Agenda for This Chapter

What (Exactly) Is a “Problem”: How are they formally defined?

→ Get ourselves on firm ground.

How To Put the Problem Into the Computer: How are problems
specified?

→ There are 3 fundamentally different methods, and the choice we make
has a huge impact on practice. (The search algorithms we introduce here
work for all 3 in principle.)

Basic Concepts of Search: What are search spaces?

→ Sets the stage for the consideration of search strategies.

(Non-Trivial) Blind Search Strategies: How to guarantee optimality?
How to make the best use of time and memory?

→ Blind search serves to get started, and is used in some applications.

→ Some implementation details, as well as plain breadth-first search and
depth-first search, are moved to the “Lookup Section” and won’t be discussed.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 10/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Before We Begin

→ To precisely specify how we solve search problems algorithmically, we
first need a formal definition.

That definition really is quite simple:

The underlying base concept are state spaces.

State spaces are (annotated) graphs.

Paths to goal states correspond to solutions.

Cheapest such paths correspond to optimal solutions.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 12/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

State Spaces

Every problem Π specifies a state space Θ: (Exactly how Π specifies Θ is
the subject of the next section)

Definition (State Space). A state space is a 6-tuple Θ = (S,A, c, T, I, SG)
where:

S is a finite set of states.

A is a finite set of actions.

c : A 7→ R+
0 is the cost function.

T ⊆ S ×A× S is the transition relation. We require that T is
deterministic, i.e., for all s ∈ S and a ∈ A, there is at most one state s′

such that (s, a, s′) ∈ T . If such (s, a, s′) exists, then a is applicable to s.

I ∈ S is the initial state.

SG ⊆ S is the set of goal states.

We say that Θ has the transition (s, a, s′) if (s, a, s′) ∈ T . We also write

s
a−→ s′, or s→ s′ when not interested in a.

We say that Θ has unit costs if, for all a ∈ A, c(a) = 1.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 13/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

State Spaces: Illustration

Directed labeled graphs + mark-up for initial state and goal states:

initial state

actB, 4

actH, 2.3

actA, 2

actF, 1.1

actE, 0

actE, 0

actE, 0

actC, 3
actD, 4.7

actG
, 0

ac
tG

,
0

actG
, 0

ac
tG

, 0

actC, 4

actC, 3

goal states

s3 s6

s2

s1 s4

s5

s7

s10

s9

s8

I

Does this Θ have unit costs? No.

Which actions are applicable to the initial state? actA, actB, actC.

Is T deterministic? No: On two of the goal states, actG labels more than
one outgoing transition.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 14/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

State Spaces Terminology

Some commonly used terms:

s′ successor of s if s→ s′; s predecessor of s′ if s→ s′.

s′ reachable from s if there exists a sequence of transitions:

s = s0
a1−→ s1, . . . , sn−1

an−−→ sn = s′

n = 0 possible; then s = s′.
a1, . . . , an is called path from s to s′.
s0, . . . , sn is also called path from s to s′.
The cost of that path is

∑n
i=1 c(ai).

s′ reachable (without reference state) means reachable from I.

s is solvable if some s′ ∈ SG is reachable from s; else, s is a dead end.

Definition (State Space Solutions). Let Θ = (S,A, c, T, I, SG) be a state
space, and let s ∈ S. A solution for s is a path from s to some s′ ∈ SG. The
solution is optimal if its cost is minimal among all solutions for s. A solution for
I is called a solution for Θ. If a solution exists, then Θ is solvable.

→ Unsolvable Θ do occur naturally! E.g., in debugging “unsolvable”= “the
program is correct”.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 15/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

State Spaces: Illustration, ctd.

Directed labeled graphs + mark-up for initial state and goal states:

initial state

actB, 4

actH, 2.3

actA, 2

actF, 1.1

actE, 0

actE, 0

actE, 0

actC, 3
actD, 4.7

actG
, 0

ac
tG

,
0

actG
, 0

actC, 4

actC, 3

goal states

s3 s6

s2

s1 s4

s5

s7

s10

s9

s8

I

Are all states in Θ reachable? No: state at bottom, 2nd from right.

Are all states in Θ solvable? No: state near top, 2nd from left.

What are the optimal solutions for Θ? Any path that starts with actB,
applies actE n ∈ {0, 2, 4, . . . } times, then applies actC then actE and then
no action other than actG.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 16/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Vacuum Cleaner

1 2

87

5 6

3 4

Starting from state 1 (dirty!) . . .

. . . go right(R), left (L), or suck (S) . . .

. . . to clean the apartment.

Performance measure: Minimize number of actions.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 17/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Vacuum Cleaner: State Space

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 18/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Missionaries and Cannibals

→ Problem: Cross the river without being eaten.

Starting with everybody on the right bank . . .

. . . use the boat which carries ≤ 2 people . . .

. . . to get everybody to the left bank.

If, at any point in time, missionaries are outnumbered by cannibals
on either bank, then . . . game over.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 19/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Missionaries and Cannibals: Clarifications

→ Problem: Cross the river without being eaten.

We consider only the states at the end of each boat ride, not the situation
during the boat ride.

At the end of each move, everybody leaves the boat (in other words, any
people left in the boat count as being on the river bank); and the game is
over in case that results in more C than M.

Moves after which the game would be over are disallowed, i.e., these
actions are not applicable.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 19/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire

Question!

For which of these problems can a solvable state space Θ contain
a reachable dead end?

(A): Route Planning

(C): Debugging

(B): 15-Puzzle

(D): Missionaries and Cannibals

→ (A): Only if there are one-way dead-end streets. Those do not (presumably)
exist on this planet, but in principle they could.

→ (B): No, because the transition relation is invertible. From any reachable
state, we can go back to the initial state and take it from there. (There are
unreachable dead ends, though: The state space of the 15-Puzzle falls into two
disconnected parts.)

→ (C): Yes. A dead end in this case is a program state from which the error
cannot be reached. Definitely exists (in some programs :-)

→ (D): Same as (B).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 20/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Route Planning: State Space

State set S: {at(x) | x city in Europe}.
Action set A: {move(x, y) | x, y linked by a road segment}.
Cost function c: Maps each move(x, y) to the length of the road
segment.

Transition relation T :
{(at(x),move(x, y), at(y)) | x, y linked by a road segment}.
Initial state I: at(SB).

Goal states SG: {at(Moscow)}.

15-Puzzle: States are position assignments to all tiles, actions
accordingly.

Software debugging: States are value assignments to all variables
(including the program counter PC), actions are program commands
(e.g., “Goto 10” becomes PC := 10).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 21/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Example Missionaries and Cannibals: State Space

State set S: Triples (M,C,B) with 0 ≤M,C ≤ 3, 0 ≤ B ≤ 1.
Here, M , C, and B respectively represent the number of
missionaries, cannibals, and boats currently on the right bank.

Initial state I: (3, 3, 1).

Goal states SG: {(0, 0, 0), (0, 0, 1)}.
Cost function c: Unit 1.

Action set A: If B = 1, subtract 1 or 2 from (M + C) and set
B := 0; if B = 0, add 1 or 2 to (M + C) and set B := 1. Both
subject to having, after the move, 0 ≤M,C ≤ 3, as well as M ≥ C
if M > 0, and 3−M ≥ 3− C if 3−M > 0.

Transition relation T : Accordingly.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 22/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

So, Why All the Fuss? Example Blocksworld

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

blocks states

1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states

9 4596553
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

→ State spaces may be huge. In particular, the state space is typically
exponentially large in the size of its specification via the problem Π (up next).

→ In other words: Search problems typically are computationallly hard (e.g.,
optimal Blocksworld solving is NP-complete).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 23/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire

Question!

Which are “Problems”?
(A): You didn’t understand any

of this.

(C): Your vacuum cleaner wants
to clean your apartment.

(B): Your bus today will
probably be late.

(D): You want to win a Chess
game.

→ (A), (B): These are problems in the natural-language use of the word, but
not “problems” in the sense defined here.

→ (C): Yes, presuming that this is a robot, i.e., an autonomous vacuum cleaner,
and that the robot has perfect knowledge about your apartment (else, it’s not a
classical search problem).

→ (D): That’s a search problem, but not a classical search problem (because
it’s multi-agent). We’ll tackle this kind of problem in Chapter 6.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 24/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire, ctd.

Question!

How to solve Missionaries and Cannibals for 2 of each?

→ Moveleft(1M,1C); Moveright(1M); Moveleft(2M); Moveright(1M);
Moveleft(1M,1C).

Question!

How to solve Missionaries and Cannibals for 3 of each?

http://www.youtube.com/watch?v=W9NEWxabGmg

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 25/69

http://www.youtube.com/watch?v=W9NEWxabGmg

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Why Am I Talking About This?

Remember the Blocksworld? 16 blocks, 1290434218669921 states.

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

Π vs. Θ: Π is the description of the problem (“A single action either
takes a . . . ”), and Θ is the state space corresponding to this description.
(Similar for software debugging etc.)

→ Huge state spaces Θ can often be specified by small problem
descriptions Π. It is thus important to distinguish the two.

→ So the question becomes: What are suitable “problem descriptions”?

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 27/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Option 1: Blackbox Description

→ The blackbox description of a problem Π is an API (a programming
interface) providing functionality allowing to construct the state space:

Blackbox Description of a Problem

InitialState(): Returns the initial state of the problem.

GoalTest(s): Returns a Boolean, “true” iff state s is a goal state.

Cost(a): Returns the cost of action a.

Actions(s): Returns the set of actions that are applicable to state s.

ChildState(s, a): Requires that action a is applicable to state s, i.e., there

is a transition s
a−→ s′. Returns the outcome state s′.

”Specifying the problem” = programming the API.

Huge state spaces can be specified with little program code.

→ The API does not provide the search with any knowledge about the problem,
other than the bare essentials needed to generate the state space. Hence the
name “blackbox”, as opposed to: up next.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 28/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Option 2: Declarative/Whitebox Description

→ The declarative description of Π comes in a problem description language:

Declarative Description of a Problem

There are many ways to do this. Here’s one:

P : Set of Boolean variables (propositions).

I: Subset of P , indicating which propositions are true in the initial state.

G: Subset of P , where s is a goal state iff G ⊆ s.

A: Set of actions a, each with precondition prea, add list adda, and delete
list dela; a applicable to s iff prea ⊆ s, outcome state is (s ∪ adda) \ dela.

c: Maps each a ∈ A to its cost c(a).

This language is called “STRIPS”; we’ll get back to it in Chapter 14.

”Specifying the problem” = writing STRIPS. The computer then inputs
that description and can generate the state space.

→ Declarative descriptions are strictly more powerful than blackbox ones. They
allow to implement the API, and much more (e.g. analyze/simplify the problem).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 29/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Option 3: Explicit Description

→ The explicit description describes Π simply in terms of its state space:

Explicit Description of a Problem

Π = Θ: We simply input the state space graph (in some representation).

”Specifying the problem” = writing down the state space.

Impossible for large state spaces.

Can be solved easily, in the size of the state space: Dijkstra’s algorithm.

→ Explicit descriptions do not have the ability to compactly describe large state
spaces.

→ They are used if state spaces are “small” (only 100000s of states) and
runtime is very limited. This is typically the case in route planning. A prominent
application is in Video games, where routes for all non-player agents must be
computed in microseconds.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 30/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

So What?

→ Declarative descriptions enable general (classical search) problem
solving:

(some new classical search problem)

describe problem in generic language 7→ use off-the-shelf solver

(its solution)

Little programming effort, easy to adapt to changes.

Core topic of FAI group; will be covered in Chapters 14 and 15.

In this and the next chapter, we assume the blackbox description. Explicit
descriptions will only be used in (some) illustrative examples.

In principle, the search strategies we will discuss can be used with any
problem description that allows to implement the blackbox API.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 31/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire

Question!

What kind of description do you use when explaining your
problems to somebody else?

(A): Blackbox

(C): Explicit

(B): Declarative

(D): I don’t have problems.

→ (A), (C): Presumably, you guys don’t do that.

→ (B): Natural language is (amongst many other things) a kind of problem
description language, so this answer makes most sense (to me). Example:
Explaining to somebody the rules of “Missionaries and Cannibals”.

→ (D): Actually that answer is reasonable given the limited notion of “problem”
(= classical search problem!) we are considering here.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 32/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire, ctd.

Question!

(A) In the blackbox description of route planning, what does
ChildState(s, a) return?
(B) In the blackbox description of debugging, what does
Actions(s) return?

→ (A): s here is the city x we’re currently at, and a is a move action of the
form move(x, y). The function call returns the city y.

→ (B): s here is a value assignment to all program variables, including the
program counter PC. The actions are the program commands (lines of code).
Assuming deterministic software, the function call will thus return exactly one
program command at position PC.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 33/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Search Illustration

How to “search”? Start at the initial state. Then, step-by-step, expand
a state by generating its successors . . .

→ Search space.

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 35/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Search Terminology

Search node n: Contains a state reached by the search, plus
information about how it was reached.

Path cost g(n): The cost of the path reaching n.

Optimal cost g∗: The cost of an optimal solution path. For a state s,
g∗(s) is the cost of a cheapest path reaching s.

Node expansion: Generating all successors of a node, by applying all
actions applicable to the node’s state s. Afterwards,
the state s itself is also said to be expanded.

Search strategy: Method for deciding which node is expanded next.

Open list: Set of all nodes that currently are candidates for
expansion. Also called frontier.

Closed list: Set of all states that were already expanded. Used only
in graph search, not in tree search (up next). Also
called explored set.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 36/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Tree Search vs. Graph Search

Duplicate Elimination:
Maintain a closed list.

Check for each generated state s′ whether s′ is in the closed list. If
so, discard s′.

Tree Search:
. . . is another word for “don’t use duplicate elimination”.

Search space is “tree-like”: We do not consider the possibility that
the same state may be reached from more than one predecessor.

The same state may appear in many search nodes.

Main advantage: lower memory consumption (no closed list needed).

Graph Search:
. . . is another word for “use duplicate elimination”.

Search space is “graph-like”: We do consider said possibility.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 37/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Generic Tree Search Procedure

This is merely a guideline for tree search!

Concrete algorithms often differ in the details, for efficiency reasons.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 38/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Generic Graph Search Procedure

This is merely a guideline for graph search!

Concrete algorithms often differ in the details, for efficiency reasons.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 39/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Criteria for Evaluating Search Strategies

Guarantees:

Completeness: Is the strategy guaranteed to find a solution when there is
one?

Optimality: Are the returned solutions guaranteed to be optimal?

Complexity:

Time Complexity: How long does it take to find a solution? (Measured
in generated states.)

Space Complexity: How much memory does the search require?
(Measured in states.)

Typical state space features governing complexity:

Branching factor b: How many successors does each state have?

Goal depth d: The number of actions required to reach the
shallowest goal state.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 40/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire

Chess board, numbering the 8 columns C1, . . . , C8 from left to
right.
8 queens Q1, . . . , Q8, each Qi to be placed “in its own” column
Ci.
We fill the columns left to right, i.e., the actions allow to place Qi
somewhere in Ci, provided all of Q1, . . . , Qi−1 have already been
placed.
Goal: Placement where no queens attack each other.

Question!

Tree search always terminates in?

(A): 15-Puzzle.

(C): Vacuum Cleaning.

(B): Missionaries and Cannibals.

(D): 8-Queens.

→ (A, B, C): No. Tree search does not check for repeated states, so if there are cycles
in the state space it may not terminate. For example, in Missionaries and Cannibals an
infinite search path just keeps moving the boat from left to right and back.

→ (D): Yes, because after adding 8 queens to the board there are no more applicable
actions. That is, the maximum length of a path in the state space is bounded by 8.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 41/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire, ctd.

3 missionaries, 3 cannibals. Boat holds ≤ 2.

Never leave k missionaries alone with > k cannibals.

States: (M,C,B) numbers on right bank.

Question!

Which are successor states of (1, 1, 0) in Missionaries and
Cannibals?
(A): (1, 1, 1).

(C): (3, 3, 1).

(B): (2, 2, 1).

(D): (2, 1, 1).

→ (A): No, someone needs to drive the boat.

→ (B): Yes, 1 missionary and 1 cannibal using the boat to get to the right bank.

→ (C): No, we would need to get 2 missionaries and 2 cannibals into boat, but there’s
only place for 2.

→ (D): No, because that would leave 1 missionary with 2 cannibals on left bank.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 42/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Preliminaries

Blind search vs. informed search:

Blind search does not require any input beyond the problem API.

Pros and Cons: Pro: No additional work for the programmer. Con:
It’s not called “blind” for nothing . . . same expansion order
regardless what the problem actually is. Rarely effective in practice.

Informed search requires as additional input a heuristic function h
(Next Chapter) that maps states to estimates of their goal
distance.

Pros and Cons: Pro: Typically more effective in practice. Con:
Somebody’s gotta come up with/implement h.

→ Note: In planning, h is generated automatically from the
declarative problem description (Chapters 14 and 15).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 44/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Preliminaries, ctd.

Blind search strategies covered:

Breadth-first search, depth-first search.

Uniform-cost search. Optimal for non-unit costs.

Iterative deepening search. Combines advantages of breadth-first
search and depth-first search.

Blind search strategy not covered:

Bi-directional search. Two separate search spaces, one forward from
the initial state, the other backward from the goal. Stops when the
two search spaces overlap.

Content I will not talk about:

Breadth-first search and depth-first search.

The pseudo-code in what follows will use some basic functions.

→ Both are in the “Lookup Section”. I strongly recommend you read
that section. Post any questions you may have in Moodle.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 45/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Uniform-Cost Search: Pseudo-Code

function Uniform-Cost Search(problem) returns a solution, or failure
node ← a node n with n.State=problem.InitialState
frontier ← a priority queue ordered by ascending g, only element n
explored ← empty set of states
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
explored ← explored∪n.State
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
if n′.State 6∈ [explored ∪ States(frontier)] then Insert(n′, g(n′), frontier)
else if ex. n′′ ∈frontier s.t. n′′.State= n′.State and g(n′) < g(n′′) then

replace n′′ in frontier with n′

Goal test at node-expansion time.
Duplicates in frontier replaced in case of cheaper path.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 46/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Russel & Norvig’s Example: Route Planning in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 47/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Route Planning in Romania: Uniform-Cost Search

Search protocol:

1 Expand Sibiu, generating Rimnicu g = 80, Fagaras g = 99.

2 Expand Rimnicu, generating Pitesti g = 80 + 97 = 177 (as well as Sibiu
which is already explored and thus pruned).

3 Expand Fagaras, generating Bucharest g = 99 + 211 = 310.

4 Expand Pitesti, generating Bucharest g = 177 + 101 = 278;

Replace Bucharest g = 310 with Bucharest g = 278 in frontier!

5 Expand Bucharest g = 278.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 48/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Uniform-Cost Search: Guarantees and Complexity

Lemma. Uniform-cost search is equivalent to Dijkstra’s algorithm on the
state space graph. (Obvious from the definition of the two algorithms.)

→ The only differences are: (a) we generate only a part of that graph
incrementally, whereas Dijkstra inputs and processes the whole graph; (b)
we stop when we reach any goal state (rather than a fixed target state
given in the input).

Theorem. Uniform-cost search is optimal. (Because Dijkstra’s algorithm
is optimal.)

Completeness: Yes, thanks to duplicate elimination and our
assumption that the state space is finite.

Time complexity: O(b1+bg
∗/εc) where g∗ denotes the cost of an

optimal solution, and ε is the positive cost of the cheapest action.

Space complexity: Same as time complexity.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 49/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Iterative Deepening Search: Pseudo-Code

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-L IMITED -SEARCH(problem ,depth)
if result 6= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL -STATE),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a newf -cost limit
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
successors← []
for each action in problem .ACTIONS(node .STATE) do

add CHILD -NODE(problem ,node ,action) into successors
if successors is emptythen return failure,∞
for each s in successors do /* updatef with value from previous search, if any */

s.f ←max(s.g + s.h, node .f))
loop do

best← the lowestf -value node insuccessors
if best .f > f limit then return failure, best .f
alternative← the second-lowestf -value amongsuccessors
result ,best .f←RBFS(problem ,best ,min(f limit, alternative))
if result 6= failure then return result

Figure 3.24 The algorithm for recursive best-first search.

function Depth-Limited Search(problem, limit) returns a solution, or failure/cutoff
node ← a node n with n.state=problem.InitialState
return Recursive-DLS(node, problem, limit)

function Recursive-DLS(n, problem, limit) returns a solution, or failure/cutoff
if problem.GoalTest(n.State) then return the empty action sequence
if limit = 0 then return cutoff
cutoffOccured ← false
for each action a in problem.Actions(n.State) do
n′ ← ChildNode(problem,n,a)
result ← Recursive-DLS(n′, problem, limit−1)
if result = cutoff then cutoffOccured ← true

else if result 6= failure then return a ◦ result
if cutoffOccured then return cutoff else return failure

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 50/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Iterative Deepening Search: Illustration

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 51/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Iterative Deepening Search: Guarantees and Complexity

“Iterative Deepening Search=
Keep doing the same work over again until you find a solution.”

BUT: Optimality? Yes!1 Completeness? Yes! Space complexity? O(b d).

Time complexity:

Breadth-First-Search b+ b2 + · · ·+ bd−1 + bd∈ O(bd)

Iterative Deepening Search (d)b+ (d− 1)b2 + · · ·+ 3bd−2 + 2bd−1 + 1bd∈ O(bd)

Example: b = 10, d = 5

Breadth-First Search 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

Iterative Deepening Search 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

→ IDS combines the advantages of breadth-first and depth-first search. It is the
preferred blind search method in large state spaces with unknown solution depth.

→ Videos illustrating vs. depth-first search: http://movingai.com/dfid.html

1For unit costs. Extension to general action costs possible.
Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 52/69

http://movingai.com/dfid.html

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Blind Search Strategies: Overview

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional

First Cost First Limited Deepening (if applicable)

Complete? Yesa Yesa,b No No Yesa Yesa,d

Optimal? Yesc Yes No No Yesc Yesc,d

Time O(bd) O(b1+bg
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+bg
∗/εc) O(bm) O(bl) O(bd) O(bd/2)

b finite branching factor
d goal depth
m maximum depth of the search tree
l depth limit

g∗ optimal solution cost
ε > 0 minimal action cost

Footnotes:
a if b is finite
b if action costs ≥ ε > 0
c if action costs are unit
d if both directions use breadth-first search

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 53/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Questionnaire

→ ”Search tree”: Tree generated by taking the initial state as the root,
then keeping to expand states without duplicate elimination. (= The
search space underlying any tree search.)

Question!

What is the size of the search tree in 8-Queens? (You may use a
pocket calculator :-)

(A): 40320

(C): 16777216

(B): 371955

(D): 19173961

→ The correct answer is (D): 19173961 = 1 + 8 + 82 + 83 + · · ·+ 88.

Question!

What about the 15-Puzzle?

→ Infinite as there are cycles (cf. slide 43).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 54/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Implementation: What Is a Search Node?

Data Structure for Every Search Node n

n.State: The state (from the state space) which the node contains.

n.Parent: The node in the search tree that generated this node.

n.Action: The action that was applied to the parent to generate the node.

n.PathCost: g(n), the cost of the path from the initial state to the node (as indicated
by the parent pointers).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 56/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Implementation, ctd: Operations on Search Nodes

Operations on Search Nodes

Solution(n): Returns the path to node n. (By backchaining over
the n.Parent pointers and collecting n.Action in each
step.)

ChildNode(problem,n,a): Generates the node n′ corresponding to the
application of action a in state n.State. That is:
n′.State:=problem.ChildState(n.State, a);
n′.Parent:= n; n′.Action:= a;
n′.PathCost:= n.PathCost+problem.Cost(a).

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 57/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Implementation, ctd: Operations for the Open List

Operations for the Open List

Empty?(frontier): Returns true iff there are no more elements in the
open list.

Pop(frontier): Returns the first element of the open list, and
removes that element from the list.

Insert(element, frontier): Inserts an element into the open list.

→ Crucial point: Where “Insert(element, frontier)” inserts the new element.
Different implementations yield different search strategies.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 58/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Breadth-First Search: Illustration and Guarantees

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Illustration:

Guarantees:

Completeness: Yes.

Optimality: Yes, for unit action costs. Breadth-first search always
finds a shallowest goal state. If costs are not unit, this is not
necessarily optimal.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 59/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Breadth-First Search: Pseudo-Code

Duplicate check against explored set and frontier: No need to re-generate
a state already in the (current) last layer.

Goal test at node-generation time (as opposed to node-expansion time):
We already know this is a shortest path so can just as well stop.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 60/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Breadth-First Search: Complexity

Time Complexity: Say that b is the maximal branching factor, and d is
the goal depth (depth of shallowest goal state).

Upper bound on the number of generated nodes:
b+ b2 + b3 + · · ·+ bd: In the worst case, the algorithm generates all
nodes in the first d layers.

So the time complexity is O(bd).

And if we were to apply the goal test at node-expansion time, rather
than node-generation time: O(bd+1) because then we’d generate the
first d+ 1 layers in the worst case.

Space Complexity: Same as time complexity since all generated nodes
are kept in memory.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 61/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Breadth-First Search: Example Data

Setting: b = 10; 10000 nodes/second; 1000 bytes/node.

Yields data: (inserting values into previous equations)

Depth Nodes Time Memory

2 110 .11 milliseconds 107 kilobytes

4 11110 11 milliseconds 10.6 megabytes

6 106 1.1 seconds 1 gigabyte

8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes

12 1012 13 days 1 petabyte

14 1014 3.5 years 99 petabytes

→ The critical resource here is memory. (In my own experience,
breadth-first search typically exhausts RAM within a few minutes.)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 62/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Depth-First Search: Illustration

Strategy: Expand the most recent nodes in (LIFO frontier).

Illustration: (Nodes at depth 3 are assumed to have no successors)

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 63/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Depth-First Search: Pseudo-Code

Typically implemented as a recursive function: (Root call on a
search node for the initial state of the problem)

function Recursive Depth-First Search(n, problem) returns a solution, or failure
if problem.GoalTest(n.State) then return the empty action sequence
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
result ← Recursive Depth-First Search(n′, problem)
if result 6= failure then return a ◦ result

return failure

→ Note: Here (and everywhere else), as we loop across
problem.Actions(n.State), we generate that set (the actions applicable to
the state) only once and store it: Finding the applicable actions typically
consumes non-negligible runtime.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 64/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Depth-First Search: Guarantees and Complexity

Guarantees:

Optimality: No. After all, the algorithm just “chooses some direction and
hopes for the best”. (Depth-first search is a way of “hoping to get lucky”.)

Completeness: No, because search branches may be infinitely long: No
check for cycles along a branch!

→ Depth-first search is complete in case the state space is acyclic. If we
do add a cycle check, it becomes complete.

Complexity:

Space: Stores nodes and applicable actions on the path to the current
node. So if m is the maximal depth reached, the complexity is O(bm).

Time: If there are paths of length m in the state space, O(bm) nodes can
be generated. Even if there are solutions of depth 1!

→ If we happen to choose “the right direction” then we can find a length-l
solution in time O(b l) regardless how big the state space is.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 65/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Summary

Classical search problems require to find a path of actions leading from an
initial state to a goal state.

They assume a single-agent, fully-observable, deterministic, static
environment. Despite this, they are ubiquitous in practice.

A problem can be described via its blackbox API, or declaratively, or
explicitly. Each method allows to generate the problem’s state space.

For blackbox and declarative descriptions, the state space is exponentially
larger than the size of the description, and deciding whether a solution
exists is computationally hard (NP and beyond).

Search strategies differ (amongst others) in the order in which they expand
search nodes, and in the way they use duplicate elimination. Criteria for
evaluating them are completeness, optimality, time complexity, and space
complexity.

Uniform-cost search is optimal and works like Dijkstra, but building the
graph incrementally. Iterative deepening search uses linear space only and
is often the preferred blind search algorithm.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 67/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

Reading

Chapter 3: Solving Problems by Searching, Sections 3.1 – 3.4 [Russell and
Norvig (2010)].

Content: Sections 3.1 and 3.2: A less formal account of what I cover here
under “What (Exactly) Is a Problem?” and “How To Put the Problem
Into the Computer?”. Gives many complementary explanations, nice as
additional background reading.

Section 3.3: Pretty much the same I cover here under “Basic Concepts of
Search”, except for small changes to the general graph search procedure: I
removed a bug, and made it more in line with what is typically used in
practice. (Exercise: do you see the differences, and do you see what’s the
bug in RN?)

Section 3.4: Pretty much the same I cover here under “Blind Search
Strategies”, except I left out bidirectional search, and adapted a few
notations.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 68/69

Introduction Classical Search Probs. Descriptions Search Basics Blind Search Strats. Lookup Section Conclusion References

References I

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Koehler and Torralba Artificial Intelligence Chapter 3: Classical Search, Part I 69/69

	Introduction
	

	What (Exactly) Is a ``Problem''?
	

	How To Put the Problem Into the Computer?
	

	Basic Concepts of Search
	

	(Non-Trivial) Blind Search Strategies
	

	Lookup Section
	

	Conclusion
	

	
	References

