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Decision-Making Under Uncertainty

Example

Giving a lecture:

Goal: Be in lecture hall at 10:15

Possible plans:

P1: Get up at 8:00, leave at 8:40, arrive at 9:00.
P2: Get up at 9:50, leave at 10:05, arrive at 10:15.

Decision: Both plans are correct, but P2 succeeds only with
probability 50%, and giving a lecture is important, so P1 is the plan
of choice.

Better Example: Which train to take to Frankfurt airport?
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Uncertainty and Logic

Diagnosis: We want to build an expert dental diagnosis system, that
deduces the cause (the disease) from the symptoms.

→ Can we base this on logic?

Attempt 1: Say we have a toothache. How’s about:

∀p[Symptom(p, toothache)→ Disease(p, cavity)]

→ Is this rule correct? No, toothaches may have different causes
(“cavity” = “Loch im Zahn”).

Attempt 2: So what about this:

∀p[Symptom(p, toothache)→
Disease(p, cavity) ∨Disease(p, gum disease) ∨ . . .]

→ We don’t know all possible causes.
→ And we’d like to be able to deduce which causes are more plausible!
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Uncertainty and Logic, ctd.

Attempt 3: Perhaps a causal rule is better?

∀p[Disease(p, cavity)→ Symptom(p, toothache)]

Is this rule correct? No, not all cavities cause toothaches.

Does this rule allow to deduce a cause from a symptom? No, setting
Symptom(p, toothache) to true here has no consequence on the
truth of Disease(p, cavity). [Note: If Symptom(p, toothache) is
false, we would conclude ¬Disease(p, cavity) . . . which would be
incorrect, cf. previous question.]

Anyway, this still doesn’t allow to compare the plausibility of
different causes.

→ Logic does not allow to weigh different alternatives, and it does not
allow to express incomplete knowledge (“cavity does not always come
with a toothache, nor vice versa”).
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Unreliable Sensors

Robot Localization: Suppose we want to support localization using
landmarks to narrow down the area.

→ ”If you see the Eiffel tower, then you’re in Paris.”

Difficulty: Sensors perceptions can be unreliable.

Even if a landmark is perceived, we cannot conclude with certainty
that the robot is at that location. (“This is the half-scale Las Vegas
copy, you dummy.”)

Even if a landmark is not perceived, we cannot conclude with
certainty that the robot is not at that location. (“Top of Eiffel tower
hidden in the clouds.”)

→ Only the probability of being at a location increases or decreases.
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Beliefs and Probabilities

What do we model with probabilities? Incomplete knowledge! We are
not 100% sure, but we believe to a certain degree that something is true.

→ Probability ≈ Our degree of belief, given our current knowledge.

Example (Diagnosis)

Symptom(p, toothache)→ Disease(p, cavity) with 80% probability.

But, for any given p, in reality we do, or do not, have cavity: 1 or 0!
→ The “probability” depends on our knowledge! The “80%” refers
to the fraction of cavity, within the set of all p′ that are
indistinguishable from p based on our knowledge.

If we receive new knowledge (e.g., Disease(p, gum disease)), the
probability changes!

→ Probabilities represent and measure the uncertainty that stems from
lack of knowledge.
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Questionnaire

Question!

What are sources of uncertainty in your life?

(A): Not knowing whether a
train will be late.

(C): Not knowing whether the
road can safely be crossed.

(B): Not knowing what the exam
questions will be.

(D): Not knowing the outcome
of a dice throw.

→ (A): Yes.

→ (B): Yes. Note that this depends on the agent’s perspective/knowledge (there’s no
uncertainty here for me).

→ (C): In the usual sense of the wording: No, because you got full observability on
this one. If we take into account exceptional cases, like a Meteorite that may hit you
on the head, or a pit hidden beneath the asphalt that you may fall into, then yes.

→ (D): Yes. Note that one could argue this is due to partial observability: if you were
able to observe all the relevant physical details . . .
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How to Obtain Probabilities?

Assessing probabilities through statistics:

The agent is 90% convinced by its sensor information
:= in 9 out of 10 cases, the information is correct.

Disease(p, cavity)→ Symptom(p, toothache) with 80% probability
:= 8 out of 10 persons with a cavity have toothache.

→ The process of estimating a probability P using statistics is called
assessing P . Assessing even a single P can require huge effort! (Eg.
“The likelihood of making it to the university within 10 minutes”)

What is probabilistic reasoning? Deducing probabilities from
knowledge about other probabilities.

→ Probabilistic reasoning determines, based on probabilities that are
(relatively) easy to assess, probabilities that are difficult to assess.
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(Uncertainty and Rational Decisions)

Here: We’re only concerned with deducing the likelihood of facts, not
with action choice. In general, selecting actions is of course important.

Rational Agents:

We have a choice of actions (go to FRA early, go to FRA just in
time).

These can lead to different solutions with different probabilities.

The actions have different costs.

The results have different utilities (safe timing/dislike airport food).

→ A rational agent chooses the action with the maximum expected
utility.

→ Decision Theory = Utility Theory + Probability Theory.
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(Decision-Theoretic Agent)

A particular kind of utility-based agent:

13 QUANTIFYING
UNCERTAINTY

function DT-AGENT(percept ) returns anaction
persistent: belief state , probabilistic beliefs about the current state of the world

action , the agent’s action

updatebelief state based onaction andpercept
calculate outcome probabilities for actions,

given action descriptions and currentbelief state
selectaction with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 13.1 A decision-theoretic agent that selects rational actions.

32
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Our Agenda for This Topic

→ Our treatment of the topic “Probabilistic Reasoning” consists of
Chapters 15 and 16.

This Chapter: All the basic machinery at use in Bayesian networks.

→ Sets up the framework and basic operations.

Chapter 16: Bayesian networks: What they are, how to build them,
how to use them.

→ The most wide-spread and successful practical framework for
probabilistic reasoning.
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This is Where We’re Headed . . .
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Our Agenda for This Chapter

Unconditional Probabilities and Conditional Probabilities: Which
concepts and properties of probabilities will be used?

→ Mostly a recap of things you’re familiar with from school.

Independence and Basic Probabilistic Reasoning Methods: What
simple methods are there to avoid enumeration and to deduce probabilities
from other probabilities?

→ A basic tool set we’ll need. (Still familiar from school?)

Bayes’ Rule: What’s that “Bayes”? How is it used and why is it
important?

→ The basic insight about how to invert the “direction” of conditional
probabilities.

Conditional Independence: How to capture and exploit complex
relations between random variables?

→ Explains the difficulties arising when using Bayes’ rule on multiple
evidences. Conditional independence is used to ameliorate these difficulties.
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Unconditional Probabilities

Definition. Given a random variable X, P (X = x) denotes the
unconditional probability, or prior probability, that X has value x in the
absence of any other information.

Example: P (Cavity = true) = 0.2, where Cavity is a random variable
whose value is true iff some given person has a cavity.

Notation/Terminology:

We will refer to the fact X = x as an event, or an outcome.

The notation uppercase “X” for a variable, and lowercase “x” for
one of its values will be used frequently. (Follows Russel/Norvig)
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Random Variables

Note: In general, random variables can have arbitrary domains. Here, we
consider finite-domain random variables only, and Boolean random
variables most of the time.

Example: P (Weather = sunny) = 0.7

P (Weather = rain) = 0.2

P (Weather = cloudy) = 0.08

P (Weather = snow) = 0.02

P (Headache = true) = 0.1

By convention, we denote Boolean random variables with A, B, and
more general finite-domain random variables with X, Y .

For Boolean variable Name, we write name for Name = true and
¬name for Name = false. (Follows Russel/Norvig)
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Probability Distributions

Definition. The probability distribution for a random variable X, written
P(X), is the vector of probabilities for the (ordered) domain of X.

Example: P(Headache) = 〈0.1, 0.9〉
P(Weather) = 〈0.7, 0.2, 0.08, 0.02〉

Terminology: Given a subset Z ⊆ {X1, . . . , Xn} of random variables, an
event is an assignment of values to the variables in Z. The joint
probability distribution, written P(Z), lists the probabilities of all events.

Example: P(Headache,Weather) =

Headache = true Headache = false

Weather = sunny P (W = sunny ∧ headache) P (W = sunny ∧ ¬headache)
Weather = rain

Weather = cloudy

Weather = snow
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The Full Joint Probability Distribution

Terminology:

Given random variables {X1, . . . , Xn}, an atomic event is an
assignment of values to all variables.

Given random variables {X1, . . . , Xn}, the full joint probability
distribution, denoted P(X1, . . . , Xn), lists the probabilities of all
atomic events.

Example:
toothache ¬toothache

cavity 0.12 0.08

¬cavity 0.08 0.72

→ All atomic events are disjoint (their pairwise conjunctions all are ⊥);
the sum of all fields is 1 (corresponds to their disjunction >).
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Probabilities of Propositional Formulas

Definition. Given random variables {X1, . . . , Xn}, a propositional formula,
short proposition, is a propositional formula over the atoms Xi = xi where xi is
a value in the domain of Xi. A function P that maps propositions into [0, 1] is
a probability measure if (i) P (>) = 1 and (ii) for all propositions A,
P (A) =

∑
e|=A P (e) where e is an atomic event.

→ Propositions represent sets of atomic events: the interpretations satisfying
the formula.

Example: P (cavity ∧ toothache) = 0.12 is the probability that some given
person has both a cavity and a toothache. (Recall the use of cavity for
Cavity = true and toothache for Toothache = true.)

Notation:

Instead of P (a ∧ b), we often write P (a, b).

Propositions can be viewed as Boolean random variables; we will denote
them with A, B as well.
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Questionnaire

Theorem (Kolmogorov). A function P that maps propositions into
[0, 1] is a probability measure if and only if (i) P (>) = 1 and (ii’) for all
propositions A, B: P (a ∨ b) = P (a) + P (b)− P (a ∧ b).

→ We can equivalently replace “(ii) for all propositions A,
P (A) =

∑
I|=A P (I)” (cf. previous slide) with Kolmogorovs (ii’).

Question!

Assume we have (iii) P (⊥) = 0. How to derive from (i), (ii’), and
(iii) that, for all propositions A, P (¬a) = 1− P (a)?

→ By (i), P (>) = 1; as a ∨ ¬a ≡ >, we get P (a ∨ ¬a) = 1. By (iii),
P (⊥) = 0; as a ∧ ¬a ≡ ⊥, we get P (a ∧ ¬a) = 0. Inserting this into
(ii’), we get P (a ∨ ¬a) = 1 = P (a) + P (¬a)− 0.
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Questionnaire, ctd.

Reminder 1: (i) P (>) = 1; (ii’) P (a ∨ b) = P (a) + P (b)− P (a ∧ b).
Reminder 2: “Probabilities model our belief.”

→ If P represents an objectively observable probability, the axioms
clearly make sense. But why should an agent respect these axioms, when
modeling its subjective own belief?

Question!

Do you believe in Kolmogorov’s axioms?

(A): Yes. (B): No.

→ You’re free to believe whatever you want, but note this (de Finetti, 1931): If
an agent has a belief that violates Kolmogorov’s axioms, then there exists a
combination of “bets” on propositions so that the agent always loses money.

→ If your beliefs are contradictory, then you will not be successful in the long
run (and even the next minute if your opponent is clever).
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Conditional Probabilities: Intuition

→ Do probabilities change as we gather new knowledge? Yes!
Probabilities model our belief, thus they depend on our knowledge.

Example: Your “probability of missing the connection train” increases
when you are informed that your current train has 30 minutes delay. The
“probability of cavity” increases when the doctor is informed that the
patient has a toothache.

In the presence of additional information, we can no longer use the
unconditional (prior!) probabilities.

Given propositions A and B, P (a | b) denotes the conditional
probability of a (i.e., A = true) given that all we know is b (i.e.,
B = true).

Example: P (cavity) = 0.2 vs. P (cavity | toothache) = 0.6. And
P (cavity | toothache ∧ ¬cavity) = 0.
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Conditional Probabilities: Definition

Definition. Given propositions A and B where P (b) 6= 0, the conditional
probability, or posterior probability, of a given b, written P (a | b), is
defined as:

P (a | b) = P (a ∧ b)
P (b)

→ The likelihood of having a and b, within the set of outcomes where we
have b.

Example: P (cavity ∧ toothache) = 0.12 and P (toothache) = 0.2 yield
P (cavity | toothache) = 0.6.
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Conditional Probability Distributions

Definition. Given random variables X and Y , the conditional probability
distribution of X given Y , written P(X | Y ), is the table of all
conditional probabilities of values of X given values of Y .

→ For sets of variables: P(X1, . . . , Xn | Y1, . . . , Ym).

Example: P(Weather | Headache) =

Headache = true Headache = false

Weather = sunny P (W = sunny | headache) P (W = sunny | ¬headache)
Weather = rain

Weather = cloudy

Weather = snow

→ ”The probability of sunshine given that I have a headache?” If you’re
susceptible to headaches depending on weather conditions, this makes
sense. Otherwise, the two variables are independent (see next section).
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Working with the Full Joint Probability Distribution

Example: toothache ¬toothache
cavity 0.12 0.08

¬cavity 0.08 0.72

→ How to compute P (cavity)? Sum across the row:

P (cavity ∧ toothache) + P (cavity ∧ ¬toothache)

→ How to compute P (cavity ∨ toothache)? Sum across atomic events:

P (cavity∧toothache)+P (¬cavity∧toothache)+P (cavity∧¬toothache)

→ How to compute P (cavity | toothache)? P (cavity∧toothache)
P (toothache)

→ All relevant probabilities can be computed using the full joint
probability distribution, by expressing propositions as disjunctions of
atomic events.
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Working with the Full Joint Probability Distribution??

→ So, is it a good idea to use the full joint probability distribution? No:

Given n random variables with k values each, the joint probability
distribution contains kn probabilities.

Computational cost of dealing with this size.

Practically impossible to assess all these probabilities.

→ So, is there a compact way to represent the full joint probability
distribution? Is there an efficient method to work with that
representation?

→ Not in general, but it works in many cases. We can work directly with
conditional probabilities, and exploit (conditional) independence.

→ Bayesian networks. (First, we do the simple case.)
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Independence

Definition. Events a and b are independent if P (a ∧ b) = P (a)P (b).

Proposition. Given independent events a and b where P (b) 6= 0, we have
P (a | b) = P (a).

Proof. By definition, P (a | b) = P (a∧b)
P (b) , which by independence is equal to

P (a)P (b)
P (b) = P (a). (→ Similarly, if P (a) 6= 0, we have P (b | a) = P (b).)

Examples:

P (Dice1 = 6 ∧Dice2 = 6) = 1/36.

P (W = sunny | headache) = P (W = sunny) unless you’re
weather-sensitive (cf. slide 26).

But toothache and cavity are NOT independent. The fraction of “cavity”
is higher within “toothache” than within “¬toothache”.
P (toothache) = 0.2 and P (cavity) = 0.2, but
P (toothache ∧ cavity) = 0.12 > 0.04.

Definition. Random variables X and Y are independent if
P(X,Y ) = P(X)P(Y ). (System of equations!)
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Illustration: Exploiting Independence

Example: toothache ¬toothache
cavity 0.12 0.08

¬cavity 0.08 0.72

Adding variable Weather with values sunny , rain, cloudy , snow , the full joint
probability distribution contains 16 probabilities.

→ But your teeth do not influence the weather, nor vice versa!

Weather is independent of each of Cavity and Toothache: For all value
combinations c, t of Cavity and Toothache, and for all values w of
Weather , we have P (c ∧ t ∧ w) = P (c ∧ t)P (w).
P(Cavity ,Toothache,Weather) can be reconstructed from the separate
tables P(Cavity ,Toothache) and P(Weather). (8 probabilities)

→ Independence can be exploited to represent the full joint probability
distribution more compactly.

→ Usually, random variables are independent only under particular conditions:
conditional independence, see later.
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The Product Rule

Proposition (Product Rule). Given propositions A and B,
P (a ∧ b) = P (a | b)P (b). (Direct from definition.)

Example: P (cavity ∧ toothache) = P (toothache | cavity)P (cavity).

→ If we know the values of P (a | b) and P (b), then we can compute
P (a ∧ b).

→ Similarly, P (a ∧ b) = P (b | a)P (a).

Notation: P(X,Y ) = P(X | Y )P(Y ) is a system of equations:

P (W = sunny ∧ headache) = P (W = sunny | headache)P (headache)

P (W = rain ∧ headache) = P (W = rain | headache)P (headache)

. . . = . . .

P (W = snow ∧ ¬headache) = P (W = snow | ¬headache)P (¬headache)

→ Similar for unconditional distributions, P(X,Y ) = P(X)P(Y ).
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The Chain Rule

Proposition (Chain Rule). Given random variables X1, . . . , Xn, we
have P(X1, . . . , Xn) = P(Xn | Xn−1, . . . , X1) ∗P(Xn−1 |
Xn−2, . . . , X1) ∗ · · · ∗P(X2 | X1) ∗P(X1).

Example: P (¬brush ∧ cavity ∧ toothache)
= P (toothache | cavity ,¬brush)P (cavity ,¬brush)
= P (toothache | cavity ,¬brush)P (cavity | ¬brush)P (¬brush).
Proof. Iterated application of Product Rule. P(X1, . . . , Xn) =
P(Xn | Xn−1, . . . , X1) ∗P(Xn−1, . . . , X1) by Product Rule. In turn,
P(Xn−1, . . . , X1) = P(Xn−1 | Xn−2, . . . , X1) ∗P(Xn−2, . . . , X1), etc.

Note: This works for any ordering of the variables.

→ We can recover the probability of atomic events from sequenced
conditional probabilities for any ordering of the variables.

→ First of the four basic techniques in Bayesian networks.
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Marginalization

→ Extracting a sub-distribution from a larger joint distribution:

Proposition (Marginalization). Given sets X and Y of random
variables, we have:

P(X) =
∑
y∈Y

P(X,y)

where
∑

y∈Y sums over all possible value combinations of Y.

Example: (Note: Equation system!)

P(Cavity) =
∑

y∈Toothache
P(Cavity , y)

P (cavity) = P (cavity , toothache) + P (cavity ,¬toothache)
P (¬cavity) = P (¬cavity , toothache) + P (¬cavity ,¬toothache)
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Questionnaire

Question!

Say P (dog) = 0.4, ¬dog ↔ cat , and P (likeslasagna | cat) = 0.5.
Then P (likeslasagna ∧ cat) =

(A): 0.2

(C): 0.475

(B): 0.5

(D): 0.3

→ We have P (cat) = 0.6 and P (likeslasagna | cat) = 0.5, hence (D) by the
product rule.

Question!

Can we compute the value of P (likeslasagna), given the above
informations?
(A): Yes. (B): No.

→ No. We don’t know the probability that dogs like lasagna, i.e.,
P (likeslasagna | dog).
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Normalization: Idea

Problem: We know P (cavity ∧ toothache) but don’t know P (toothache):

P (cavity | toothache) = P (cavity ∧ toothache)

P (toothache)
=

0.12

P (toothache)

Step 1: Case distinction over the values of Cavity :

P (¬cavity | toothache) = P (¬cavity ∧ toothache)

P (toothache)
=

0.08

P (toothache)

Step 2: Assuming placeholder α := 1/P (toothache):

P (cavity | toothache) = αP (cavity ∧ toothache) = α0.12

P (¬cavity | toothache) = αP (¬cavity ∧ toothache) = α0.08

Step 3: Fixing toothache to be true, view P (cavity ∧ toothache) vs.
P (¬cavity ∧ toothache) as the relative weights of P (cavity) vs. P (¬cavity)
within toothache. Then normalize their summed-up weight to 1:

1 = α(0.12 + 0.08)⇒ α = 1/(0.12 + 0.08) = 1/0.2 = 5

→ α is the normalization constant scaling the sum of relative weights to 1.
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Normalization: Formal

Definition. Given a vector 〈w1, . . . , wk〉 of numbers in [0, 1] where∑k
i=1 wi ≤ 1, the normalization constant α is α〈w1, . . . , wk〉 := 1/

∑k
i=1 wi.

Example: α〈0.12, 0.08〉 = 5〈0.12, 0.08〉 = 〈0.6, 0.4〉.

Proposition (Normalization). Given a random variable X and an event e, we
have P(X | e) = αP(X, e).

Proof. For each value x of X, P (X = x | e) = P (X = x ∧ e)/P (e). So all we
need to prove is that α = 1/P (e). By definition, α = 1/

∑
x P (X = x ∧ e), so

we need to prove P (e) =
∑

x P (X = x ∧ e) which holds by Marginalization.

Example: α〈P (cavity ∧ toothache), P (¬cavity ∧ toothache)〉 = α〈0.12, 0.08〉,
so P (cavity | toothache) = 0.6, and P (¬cavity | toothache) = 0.4.

Normalization+Marginalization: Given “query variable” X, “observed event”
e, and “hidden variables” set Y: P(X | e) = αP(X, e) = α

∑
y∈Y P(X, e,y).

→ Second of the four basic techniques in Bayesian networks.
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Questionnaire

Question!

Say we know P (likeschappi ∧ dog) = 0.32 and
P (¬likeschappi ∧ dog) = 0.08. Can we compute
P (likeschappi | dog)?
(A): Yes. (B): No.

→ Yes, because we can compute
P (dog) = P (likeschappi ∧ dog) + P (¬likeschappi ∧ dog), and thus

P (likeschappi | dog) = P (likeschappi∧dog)
P (dog) .

→ In other words, we can use Normalization: P(X | e) = αP(X, e).

Inserting LikesChappi for X and dog for e, we get
P(LikesChappi | dog) = αP(LikesChappi , dog) =
α〈P (likeschappi ∧ dog), P (¬likeschappi ∧ dog)〉 = α〈0.32, 0.08〉.
→ So what is P (likeschappi | dog)? 0.8, because
α = 1/P (dog) = 1/(0.32 + 0.08) = 2.5.
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Bayes’ Rule

Proposition (Bayes’ Rule). Given propositions A and B where
P (a) 6= 0 and P (b) 6= 0, we have:

P (a | b) = P (b | a)P (a)
P (b)

Proof. By definition, P (a | b) = P (a∧b)
P (b) which by product rule

P (a ∧ b) = P (b | a)P (a) is equal to the claim.

Notation: (System of equations)

P(X | Y ) =
P(Y | X)P(X)

P(Y )
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Applying Bayes’ Rule

Example: Say we know that P (toothache | cavity) = 0.6,
P (cavity) = 0.2, and P (toothache) = 0.2.

→ We can compute P (cavity | toothache): By Bayes’ rule,

P (cavity | toothache) = P (toothache|cavity)P (cavity)
P (toothache) = 0.6∗0.2

0.2 = 0.6.

Ok, but: Why don’t we simply assess P (cavity | toothache) directly?

P (toothache | cavity) is causal, P (cavity | toothache) is diagnostic.

Causal dependencies are robust over frequency of the causes.
→ Example: If there is a cavity epidemic then P (cavity | toothache)
increases, but P (toothache | cavity) remains the same.

Also, causal dependencies are often easier to assess.

→ Bayes’ rule allows to perform diagnosis (observing a symptom, what is
the cause?) based on prior probabilities and causal dependencies.
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Questionnaire

Question!

Say P (dog) = 0.4, P (likeschappi | dog) = 0.8, and
P (likeschappi) = 0.5. What is P (dog | likeschappi)?
(A): 0.8

(C): 0.9

(B): 0.64

(D): 0.32

→ By Bayes’ rule,

P (dog | likeschappi) = P (likeschappi|dog)P (dog)
P (likeschappi) = 0.8∗0.4

0.5 = 0.64 so (B).

→ Is P (likeschappi | dog) causal or diagnostic? Causal; liking or not liking dog
food may be caused by being or not being a dog.

→ Is P (dog | likeschappi) causal or diagnostic? Diagnostic; liking Chappi does
not cause anybody to be a dog.
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Bayes’ Rule with Multiple Evidence

Example: Say we know from medicinical studies that P (cavity) = 0.2,
P (toothache | cavity) = 0.6, P (toothache | ¬cavity) = 0.1,
P (catch | cavity) = 0.9, and P (catch | ¬cavity) = 0.2. Now, in case we did
observe the symptoms toothache and catch (the dentist’s probe catches in the
aching tooth), what would be the likelihood of having a cavity? What is
P (cavity | catch, toothache)?

By Bayes’ rule we get:

P (cavity | catch, toothache) = P (catch, toothache | cavity)P (cavity)

P (catch, toothache)

Question!

So, is everything fine? Do we just need some more medicinical studies?

(A): Yes. (B): No.

→ No! We would need P(toothache ∧ catch | Cavity), i.e., causal dependencies
for all combinations of symptoms! (� 2, in general)
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Bayes’ Rule with Multiple Evidence, ctd.

Second attempt: First Normalization (slide 38), then Chain Rule
(slide 34) using ordering X1 = Cavity , X2 = Catch, X3 = Toothache:

P(Cavity | catch, toothache) =
αP(Cavity , catch, toothache) =

αP(toothache | catch,Cavity)P(catch | Cavity)P(Cavity)

Close, but no Banana: Less red (i.e.unknown) probabilities, but still
P(toothache | catch,Cavity).

But: Are Toothache and Catch independent?

→ No. If a probe catches, we probably have a cavity which probably
causes toothache.

But: They are independent given the presence or absence of cavity!

→ See next slide.
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Conditional Independence

Definition. Given sets of random variables Z1, Z2, Z, we say that Z1

and Z2 are conditionally independent given Z if:

P(Z1,Z2 | Z) = P(Z1 | Z)P(Z2 | Z)

We alternatively say that Z1 is conditionally independent of Z2 given Z.

Example:

P(Toothache,Catch | cavity) = P(Toothache | cavity)P(Catch | cavity)
P(Toothache,Catch | ¬cavity) = P(Toothache | ¬cavity)P(Catch | ¬cavity)

→ For cavity : this may cause both, but they don’t influence each other.
For ¬cavity : catch and/or toothache would each be caused by something else.

Note: The definition is symmetric regarding the roles of Z1 and Z2:
Toothache is conditionally independent of Catch, and vice versa.

Koehler and Torralba Artificial Intelligence Chapter 15: Probabilistic Reasoning, Part I 47/55



Introduction Uncond. P. Cond. Indep. Basic Methods Bayes’ Cond. Indep. Conclusion References

Conditional Independence, ctd.

Proposition. If Z1 and Z2 are conditionally independent given Z, then
P(Z1 | Z2,Z) = P(Z1 | Z).
Proof. By definition, P(Z1 | Z2,Z) =

P(Z1,Z2,Z)
P(Z2,Z)

which by product rule

is equal to P(Z1,Z2|Z)P(Z)
P(Z2,Z)

which by prerequisite is equal to
P(Z1|Z)P(Z2|Z)P(Z)

P(Z2,Z)
. Since P(Z2|Z)P(Z)

P(Z2,Z)
= 1 this proves the claim.

Example: Using {Toothache} as Z1, {Catch} as Z2, and {Cavity} as
Z: P(Toothache | Catch,Cavity) = P(Toothache | Cavity).

→ In the presence of conditional independence, we can drop variables
from the right-hand side of conditional probabilities.

→ Third of the four basic techniques in Bayesian networks. Last missing
technique: “Capture variable dependencies in a graph”; illustration see
next slide, details see Next Chapter.

Koehler and Torralba Artificial Intelligence Chapter 15: Probabilistic Reasoning, Part I 48/55



Introduction Uncond. P. Cond. Indep. Basic Methods Bayes’ Cond. Indep. Conclusion References

Exploiting Conditional Independence: Overview

1. Graph captures variable dependencies: (Variables X1, . . . , Xn)

Toothache Catch

Cavity

→ Given evidence e, want to know P(X | e). Remaining vars: Y.

2. Normalization+Marginalization:
P(X | e) = αP(X, e); if Y 6= ∅ then P(X | e) = α

∑
y∈Y P(X, e,y)

→ A sum over atomic events!

3. Chain rule: Order X1, . . . , Xn consistently with dependency graph.
P(X1, . . . , Xn) = P(Xn | Xn−1, . . . , X1)∗P(Xn−1 | Xn−2, . . . , X1)∗· · ·∗P(X1)

4. Exploit conditional independence: Instead of P(Xi | Xi−1, . . . , X1),
with previous slide we can use P(Xi | Parents(Xi)).

→ Bayesian networks!
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Exploiting Conditional Independence: Example

1. Graph captures variable dependencies: (See previous slide.)
→ Given toothache, catch, want P(Cavity | toothache, catch).
Remaining vars: ∅.
2. Normalization+Marginalization:

P(Cavity | toothache, catch) = αP(Cavity , toothache, catch)

3. Chain rule: Order X1 = Cavity , X2 = Toothache, X3 = Catch.
P(Cavity , toothache, catch) =

P(catch | toothache,Cavity)P(toothache | Cavity)P(Cavity)

4. Exploit conditional independence:
Instead of P(catch | toothache,Cavity) use P(catch | Cavity).

Thus: P(Cavity | toothache, catch) =
αP(catch | Cavity)P(toothache | Cavity)P(Cavity) =
α〈0.9 ∗ 0.6 ∗ 0.2, 0.2 ∗ 0.1 ∗ 0.8〉 = α〈0.108, 0.016〉. So α ≈ 8.06 and
P(cavity | toothache ∧ catch) ≈ 0.87.
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Questionnaire

Question!

Consider the random variables X1 = Animal , X2 = LikesChappi , and
X3 = LoudNoise; X1 has values {dog , cat , other}, X2 and X3 are Boolean.
Which statements are correct?

(A): Animal is independent of
LikesChappi .

(C): Animal is conditionally
independent of LikesChappi
given LoudNoise.

(B): LoudNoise is independent of
LikesChappi .

(D): LikesChappi is conditionally
independent of LoudNoise
given Animal .

→ (A) No: likeschappi indicates dog .

→ (B) No: Not knowing what animal it is, loudnoise is an indication for dog which
indicates likeschappi .

→ (C) No: For example, even if we know loudnoise, knowing in addition that
likeschappi gives us a stronger indication of Animal = dog .

→ (D) Yes: If we already know what animal it is, also knowing LoudNoise does not
influence LikesChappi nor vice versa.
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Summary

Uncertainty is unavoidable in many environments, namely whenever
agents do not have perfect knowledge.

Probabilities express the degree of belief of an agent, given its
knowledge, into an event.

Conditional probabilities express the likelihood of an event given
observed evidence.

Assessing a probability means to use statistics to approximate the
likelihood of an event.

Bayes’ rule allows us to derive, from probabilities that are easy to
assess, probabilities that aren’t easy to assess.

Given multiple evidence, we can exploit conditional independence.

→ Bayesian networks (up next) do this, in a comprehensive manner.
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Reading

Chapter 13: Quantifying Uncertainty [Russell and Norvig (2010)].

Content: Sections 13.1 and 13.2 roughly correspond to my
“Introduction” and “Probability Theory Concepts”. Section 13.3
and 13.4 roughly correspond to my “Basic Probabilistic Inference”.
Section 13.5 roughly corresponds to my “Bayes’ Rule” and
“Multiple Evidence”.

In Section 13.6, RN go back to the Wumpus world and discuss some
inferences in a probabilistic version thereof.

Overall, the content is quite similar. I have added some examples,
have tried to make a few subtle points more explicit, and I indicate
already how these techniques will be used in Bayesian networks. RN
gives many complementary explanations, nice as additional
background reading.
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