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Introduction
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Reminder: Our Agenda for This Topic

— Our treatment of the topic “Planning” consists of Chapters 13 and 14.J

° Background, planning languages, complexity.

— Sets up the framework. Computational complexity is essential to
distinguish different algorithmic problems, and for the design of
heuristic functions (see next).

° How to automatically generate a heuristic function,
given planning language input?

— Focussing on heuristic search as the solution method, this is the
main question that needs to be answered.
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Reminder: Search

— Starting at initial state, produce all successor states step by step:

(a) initial state (3,3,1)
(b) after expansion (3,3,1)
of (3,3,1)

(2370) (3,2,0) (2,2,0) (1,370)(3,1,0)

(c) after expansion (3,3,1)
of (3,2,0)

(2370) (3,20 (22,00 (1370)(3,1,0)
(3,3,1)

— In planning, this is referred to as forward search, or forward
state-space search.
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Search in the State Space?

Talk to Parrot I:l
Buy a Dog I:I
Go To Class El
Buy Tuna Fish :I
Buy Arugula El
Buy Milk D_» -
[
Sit Some More I:I
Read A Book I:I

— Use heuristic function to guide the search towards the goal!

Go To Pet Store

Go To School

Start [ Go To Supermarket

Go To Sleep

Read A Book

ajainln

Sit in Chair
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Reminder: Informed Search
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— Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small A(s).

Live Demo vs. Breadth-First Search:
http://qiao.github.io/PathFinding. js/visual/
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Reminder: Heuristic Functions

Definition (Heuristic Function). Let II be a planning task with states S. A
heuristic function, short heuristic, for Il is a function h : S — N(J{ U {00} so that
h(s) = 0 whenever s is a goal state.

— Exactly like our definition from . Except, because we assume unit
costs here, we use N instead of R

Definition (h*, Admissibility). Let II be a planning task with states S. The
perfect heuristic h* assigns every s € S the length of a shortest path from s to
a goal state, or co if no such path exists. A heuristic function h for II is
admissible if, for all s € S, we have h(s) < h*(s).

— Exactly like our definition from , except for path length instead of
path cost (cf. above).

— In all cases, we attempt to approximate h*(s), the length of an optimal plan
for s. Some algorithms guarantee to lower-bound 2*(s).
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Reminder: Greedy Best-First Search and A*

Duplicate elimination omitted for simplicity:

function Greedy Best-First Search [A”](problem) returns a solution, or failure
node < a node n with n.state=problem.InitialState
frontier <— a priority queue ordered by ascending h [g + k], only element n
loop do
if Empty?(frontier) then return failure
n < Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do
n’ < ChildNode(problem,n,a)
Insert(n/, h(n') [g(n’) + h(n')], frontier)

— Is Greedy Best-First Search optimal? No = satisficing planning.

— Is A* optimal? Yes, but only if & is admissible —>
optimal planning, with such h.
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Our Agenda for This Chapter

@ How to Relax: How to relax a problem?
— Basic principle for generating heuristic functions.

@ The Delete Relaxation: How to relax a planning problem?

— The delete relaxation is the most successful method for the automatic
generation of heuristic functions. It is a key ingredient to almost all IPC

winners of the last decade. It relaxes STRIPS planning tasks by ignoring

the delete lists.

@ The h™ Heuristic: What is the resulting heuristic function?
— ht is the “ideal” delete relaxation heuristic.

@ Approximating hT: How to actually compute a heuristic?
— Turns out that, in practice, we must approximate h™.

@ An Overview of Advanced Results: And what else can we do?

— This section gives a brief glimpse into the state of the art in the area as
a whole.
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How to Relax
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Reminder: Heuristic Functions from Relaxed Problems

United
& Kingdom
A\, lsleof Man Lesds
ooy Liverpoole
Irefand . ©
Erm\r{\)gham
Cg'k
. London
B\gbl g
Nantes
)

Edinburgh...:

Gothenburg
o
Denmark oCopenhagen
Harréburg
s
Amsterdam o Comen
Netherlands
SRR
1 Belgium/; -ologne Germany
L »
+ it Frankiurt W\ Prague
V4 '\ Czech Republic
Paris ol N i
o 7 ; i1
Saarbruecken Munich L 00 rad {
e auch s ~) Austria ; ‘
A il ; J

Problem II: Find a route from Saarbruecken To Edinburgh.
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How to Relax
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Reminder: Heuristic Functions from Relaxed Problems

Edinburgh

K

X

Saarbruecken

Relaxed Problem II': Throw away the map.
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How to Relax
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Reminder: Heuristic Functions from Relaxed Problems

Edinburgh

Saarbruecken

Heuristic function h: Straight line distance.
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How to Relax
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How to Relax
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@ You have a class P of problems, whose perfect heuristic 3, you wish
to estimate.

@ You define a class P’ of simpler problems, whose perfect heuristic
hp, can be used to estimate h.

@ You define a transformation — the relaxation mapping R — that
maps instances II € P into instances II' € P’.

@ Given II € P, you let I := R(II), and estimate h}(II) by A}, (II).
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Relaxation in Route-Finding

Edinburgh s..
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Koehler and Torralba

Problem class P: Route finding.

Artificial Intelligence

Perfect heuristic h}, for P: Length of a shortest route.
Simpler problem class P’: Route finding on an empty map.
Perfect heuristic h},, for P’: Straight-line distance.

Transformation R: Throw away the map.

Chapter 14: Planning, Part Il
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How to Relax
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How to Relax in Planning? (A Reminder!)

Example: “Logistics” P PS PS PY
D

e Facts P: {truck(z) |z € {A,B,C,D}}U
{pack(z) |z € {A,B,C,D,T}}.
o Initial state I: {truck(A), pack(C)}.
@ Goal G: {truck(A), pack(D)}.
@ Actions A: (Notated as “precondition = adds, — deletes”)
o drive(z,y), where x,y have a road:
“truck(x) = truck(y), ~truck(xz)".
o load(x): “truck(z), pack(x) = pack(T), ~pack(x)".
o unload(x): “truck(z), pack(T) = pack(zx), ~pack(T)".

Example “Only-Adds” Relaxation: Drop the preconditions and deletes.
“drive(z,y): = truck(y)"; “load(x): = pack(T)"; “unload(z): = pack(zx)".
— Heuristic value for T is? 1: A plan for the relaxed task is (unload(D)).
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How to Relax
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How to Relax During Search: Overview

Attention! Search uses the real (un-relaxed) II. The relaxation is applied (e.g.,
in Only-Adds, the simplified actions are used) only within the call to Ai(s)!!!

Problem II _>1 Heuristic Search on 11 Solution to IT

state s h(s) = hix(R(I1y))

@ Here, I1; is IT with initial state replaced by s, i.e., I = (P, A, I,G)
changed to (P, A, s,G): The task of finding a plan for search state s.

@ A common student mistake is to instead apply the relaxation once to the
whole problem, then doing the whole search “within the relaxation”.

@ The next slide illustrates the correct search process in detail.
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How to Relax During Search: Only-Adds

Real problem:
@ Initial state I: AC; goal G: AD.
@ @ @ ® @ Actions A: pre, add, del.
A B C D @ drXY,loX,ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/
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How to Relax
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How to Relax During Search: Only-Adds

Relaxed problem:
@ State s: AC; goal G: AD.
{  J @ ® @ Actions A: add.
A B C D @ h®(s) =1: (ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/
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How to Relax During Search: Only-Adds

Real problem:

@ State s: BC, goal G: AD
Cﬂ L]
B C

@ Actions A: pre, add, del.
o ACc 45, BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

1

\

|

1

\

|

|

|

1 graB o
""" ¢
AC BC
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How to Relax
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How to Relax During Search: Only-Adds

Relaxed problem:
@ State s: BC; goal G: AD.
.ﬂ ® @ Actions A: add.
A B c D @ h®(s) =2: (drBA,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

|
\
1
1
1
\
1
1

1 graAB %
—

AC BC

Koehler and Torralba Artificial Intelligence Chapter 14: Planning, Part Il 17/73
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How to Relax During Search: Only-Adds

Real problem:
E% @ State s: CC; goal G: AD.
@ @ ‘ﬂ L J @ Actions A: pre, add, del.
A B C D o BC XEY cc.

Greedy best-first search:

(tie-breaking: alphabetic)

We are here
\

Koehler and Torralba
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How to Relax During Search: Only-Adds

Relaxed problem:
@ @ State s: CC; goal G: AD.
{  J .ﬂ ® @ Actions A: add.
A B c D @ h%(s) =2: (drBA,ulD).

Greedy best-first search:

(tie-breaking: alphabetic)

We are here
\

Koehler and Torralba
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How to Relax
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How to Relax During Search: Only-Adds

Real problem:
@ State s: AC; goal G: AD.
@ @ @ ® @ Actions A: pre, add, del.
A B C D @ Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\
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How to Relax During Search: Only-Adds

E% Real problem:
@ State s: DC,; goal G: AD.

@ @ ‘ﬂ L J @ Actions A: pre, add, del.
A B C D e CcC £ pe.

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here
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How to Relax During Search: Only-Adds

E% Relaxed problem:

@ State s: DC,; goal G: AD.
@ Actions A: add.
D @ h®(s) =2: (drBA,ulD).

o
A

- e
®
]

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here
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How to Relax

How to Relax During Search: Only-Adds
Real problem:
@% @ State s: CT; goal G: AD.
@ @ @ L J @ Actions A: pre, add, del.
A B C D e cCc S o

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
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How to Relax During Search: Only-Adds

Er@-_‘~ Relaxed problem:

3 @ State s: CT; goal G: AD.
{  J @ ® @ Actions A: add.
A B C D @ h®(s) =2: (drBA,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
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How to Relax During Search: Only-Adds

E% Real problem:

@ State s: BC, goal G: AD.
@ @ .ﬂ ® @ Actions A: pre, add, del.
A B C D @ Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
X
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How to Relax
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How to Relax During Search: Only-Adds

Real problem:
@ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
@ drXY,loX,ulX.

® L L
A B C

e

1 wa 1 araB 2 darBc 2
— 2 °

Greedy best-first search:
(tie-breaking: alphabetic)
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How to Relax
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Only-Adds is a “Native” Relaxation

Native Relaxations: Confusing special case where P’ C P.

P Nj U {c0}

hp

hp

@ Problem class P: STRIPS planning tasks.
@ Perfect heuristic h}, for P: Length h* of a shortest plan.
@ Transformation R: Drop the preconditions and delete lists.

@ Simpler problem class P’ is a special case of P, P/ € P: STRIPS planning
tasks with empty preconditions and delete lists.

@ Perfect heuristic for P’: Shortest plan for only-adds STRIPS task.
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Questionnaire

Does Only-Adds yield a “good heuristic” (accurate goal distance
estimates) in ...

(A): Freecell? (B): SAT? (#unsatisfied clauses)
(C): Blocksworld? (D): Path Planning?

— (A): No: The heuristic value does take into account how many cards are already
“home”, but it is completely independent of the placement of all the other cards. In
particular, dead-end avoidance is essential in Freecell, but the heuristic is completely
unable to detect any dead ends.

— (B): No: Typically, it is easy to satisfy many clauses, but then satisfying the
remaining ones involves re-doing the entire assignment. (Nevertheless, this heuristic is
being used in local search for SAT!)

— (C): No: e.g., if a single block A still needs to move elsewhere, but there are 100
blocks on top of A, then the heuristic value is 1.

— (D): No! The heuristic remains constantly 1 until we reach the actual goal state.
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Delete Relaxation
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How the Delete Relaxation Changes the World

Relaxation mapping R saying that:

“When the world changes, its previous state remains true as well.”

Relaxed world: (before)
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Delete Relaxation
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How the Delete Relaxation Changes the World

Relaxation mapping R saying that:

“When the world changes, its previous state remains true as well.”

Relaxed world: (after)
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Delete Relaxation
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The Delete Relaxation

Definition (Delete Relaxation). Let Il = (P, A,I,G) be a planning
task. The delete-relaxation of Il is the task I = (P, A*, I, G) where
AT ={a* | a € A} with pre,+ = pre,, add,+ = add,, and del,+ = .
— In other words, the class of simpler problems P’ is the set of all

STRIPS planning tasks with empty delete lists, and the relaxation
mapping R drops the delete lists.

Definition (Relaxed Plan). Let Il = (P, A, I, G) be a planning task,
and let s be a state. A relaxed plan for s is a plan for (P, A,s,G)". A
relaxed plan for I is called a relaxed plan for II.

— A relaxed plan for s is an action sequence that solves s when
pretending that all delete lists are empty.

— Also called delete-relaxed plan; “relaxation” is often used to mean
“delete-relaxation” by default.
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Delete Relaxation
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A Relaxed Plan for “TSP” in Australia

@ Initial state: {at(Sydney), visited(Sydney)}.

@ Apply drive(Sydney, Brisbane): {at(Brisbane), visited (Brisbane),
at(Sydney), visited (Sydney)}.

© Apply drive(Sydney, Adelaide)™: {at(Adelaide), visited( Adelaide),
at(Brisbane), visited (Brisbane), at(Sydney), visited(Sydney)}.

@ Apply drive(Adelaide, Perth)™: {at(Perth), visited(Perth),
at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane),
at(Sydney), visited (Sydney)}.

© Apply drive(Adelaide, Darwin)t: {at(Darwin), visited( Darwin),
at(Perth), visited(Perth), at(Adelaide), visited(Adelaide),
at(Brisbane), visited (Brisbane), at(Sydney), visited(Sydney)}.
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A Relaxed Plan for “Logistics”

-

® L ";j @
A B C D

Facts P: {truck(z) |z € {A, B,C, D}}U pack(z) | z € {A,B,C,D,T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Relaxed actions A™: (Notated as “precondition = adds”)
o drive(z,y)T: “truck(x) = truck(y)".
o load(z)*: “truck(z), pack(x) = pack(T)".
o unload(x)™: “truck(z), pack(T) = pack(x)".

Relaxed plan:
(drive(A, B)", drive(B, C)™", load(C)*, drive(C, D), unload(D)™)
— We don't need to drive the truck back, because “it is still at A”.
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Questionnaire

How does ignoring delete lists simplify Sokoban?

(A): Free positions remain free. (B): You can walk through walls.
(C): (D): You will never “lock
yourself in”.

— (A): Yes, when we move a stone into a free space, that space is still free
afterwards.

— (B): No, we dont get any new moves in the relaxation.

— (C): Only if we give names to the stones. Within the relaxed problem, it may
happen that two stones are in the same position, so in principle we can push
them both. However, without distinguishing stone names, it is impossible to
separate them again, so the two stones in fact become (behave in all relevant
ways exactly like) a single stone.

— (D): Yes, that's because of (A).
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PlanEx™

Definition (Relaxed Plan Existence Problem). By PlanEx", we
denote the problem of deciding, given a planning task I1 = (P, A, I, G),
whether or not there exists a relaxed plan for I1.

— This is easier than PlanEx for general STRIPS!
Proposition (PlanEx™ is Easy). PlanEx" is a member of P.
Proof. The following algorithm decides PlanEx™:
F=1
while G € F do
F'=FU UaEA:pre CF a‘dda
(*) if F/ = F then return “unsolvable” endif
F:=F
endwhile
return “solvable”

The algorithm terminates after at most |P| iterations, and thus runs in
polynomial time. Correctness: See slide 30.
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Deciding PlanEx™ in “TSP” in Australia

Iterations on I":

Q {at(Sydney), visited(Sydney)}
@ U {at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)}
© U {at(Darwin), visited( Darwin), at(Perth), visited(Perth)}
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Deciding PlanEx™ in “Logistics”

o ® L ®
A B D

Iterations on F':

Q {truck(A), pack(C)}

Q U {truck(B)}

Q U {truck(C)}

Q U {truck(D), pack(T)}

Q U {pack(A), pack(B), pack(D)}

Koehler and Torralba Artificial Intelligence Chapter 14: Planning, Part Il 28/73



Delete Relaxation
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Deciding PlanEx™ in Unsolvable “Logistics”

Iterations on F':

Q {truck(A), pack(C)}
Q U {truck(B)}
Q U {truck(C)}
Q U {pack(T)}

Q U {pack(A), pack(B)}
QU

(B)
(@)
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Delete Relaxation
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PlanEx™ Algorithm: Proof

— Show: The algorithm returns “solvable” iff there exists a relaxed plan for II.
Denote by F; the content of F' after the ith iteration of the while-loop, and
denote by A; the set of actions a where pre, C F;.

All a € Ay are applicable in I, all a € A1 are applicable in appl(I, AJ), and so
forth. Thus F; = appl(1, (A7, ..., Af ). (Within each A7, we can sequence
the actions in any order.)

Direction “=": If “solvable" is returned after iteration n then G C F,, =
appl(I, (Af, ..., At 1)) so (Af,..., A} ) can be sequenced to a relaxed plan
which shows the claim.

Direction “«<=": Let {ag,...,a} ) be a relaxed plan, hence

G C appl(I,{ag,...,a;_,)). Assume, for the moment, that we drop line (*)
from the algonthm It is then easy to see that a; € A; and

appl(I, {ag,...,a} |)) C F;, for all i. We get G C appl(I,{ag,...,a}_,))

C F,, and the algorithm returns “solvable” as desired.

Assume to the contrary of the claim that, in an iteration ¢ < n, (*) fires. Then
G ¢ F and F = F'. But, with F'=F', F' = F} for all j > ¢, and we get
G ¢ F, in contradiction.
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The h™ Heuristic
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Hold on a Sec — Where are we?

[P | N U {oo}

P CP
|
[

C

-

e P: STRIPS planning tasks; h,: Length h* of a shortest plan.
e P’ C P: STRIPS planning tasks with empty delete lists.

@ R: Drop the delete lists.

@ Heuristic function: Length of a shortest relaxed plan (h* o R).

— PlanEx™ is not actually what we're looking for. PlanEx™ = relaxed
plan existence; we want relaxed plan length h* o R.
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The h™ Heuristic
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h*: The ldeal Delete Relaxation Heuristic

Definition (Optimal Relaxed Plan). LetII = (P, A,I,G) be a
planning task, and let s be a state. An optimal relaxed plan for s is an
optimal plan for (P, A,s,G)*.

— Same as slide 22, just adding the word “optimal”.

Here’s what we’re looking for:

Definition (k™). Let Il = (P, A,I,G) be a planning task with states S.
The ideal delete-relaxation heuristic h™ for 11 is the function
h* : S+ NoU{oo} where h*(s) is the length of an optimal relaxed plan
for s if a relaxed plan for s exists, and h(s) = co otherwise.

— In other words, h™ = h* o R, cf. previous slide.
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The h™ Heuristic
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h™ is Admissible

Lemma. Let Il = (P, A, I,G) be a planning task, and let s be a state. If

(ai,...,an) is a plan for (P, A, s,G), then (af,...,a}) is a plan for
(P,A,s5,G)"

Proof Sketch. Show by induction over 0 < i < n that

appl(s, (a1, ..., a;)) C appl(s, (ay ..., a]")).

— "If we ignore deletes, the states along the plan can only get bigger.”

Theorem. h™ is Admissible.

Proof. Let IT = (P, A, I,G) be a planning task with states S, and let

s € S. h*(s) is defined as optimal plan length in (P, A, s, G)™. With the
above lemma, any plan for (P, A, s, G) also constitutes a plan for

(P, A,s,G)". Thus optimal plan length in (P, A,s,G)" can only be
shorter than that in (P, A, s, G), and the claim follows.

Koehler and Torralba Artificial Intelligence Chapter 14: Planning, Part Il 34/73



The h™ Heuristic
[e1eleY Tolelelele)

h™ in “TSP” in Australia

Planning vs. Relaxed Planning:

@ Optimal plan: (drive(Sydney, Brisbane), drive(Brisbane, Sydney),
drive(Sydney, Adelaide), drive( Adelaide, Perth), drive(Perth, Adelaide),
drive(Adelaide, Darwin), drive(Darwin, Adelaide), drive(Adelaide, Sydney)).

@ Optimal relaxed plan: (drive(Sydney, Brisbane), drive(Sydney, Adelaide),
drive(Adelaide, Perth), drive(Adelaide, Darwin)).

o hi(I)=8 ht(I)=4.
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How to Relax During Search: Ignoring Deletes

Real problem:

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Koehler and Torralba Artificial Intelligence

@ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
@ drXY loX,ulX.
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The h™ Heuristic
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Koehler and Torralba Artificial Intelligence

@ State s: AC; goal G: AD.

@ Actions A: pre, add.

@ h'(s) =5: eg.
(drAB,drBC,drCD,loC,ulD).
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How to Relax During Search: Ignoring Deletes

Real problem:

@ State s: BC, goal G: AD
° PS .ﬂ ° Actio:rzg: pre, add, del.
A B C D

@ AC — BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

|
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How to Relax During Search: Ignoring Deletes

Relaxed problem:

@ State s: BC, goal G: AD.
@ Actions A: pre, add.
@ h'(s) =5: eg.
(drBA, drBC,drCD,loC,ulD)
Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|
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How to Relax During Search: Ignoring Deletes

Real problem:

E% @ State s: CC, goal G: AD.
° Py .ﬂ ° Actio;rsBél: pre, add, del.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

i drAB drBC \‘6
AC BC cc
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How to Relax During Search: Ignoring Deletes

Relaxed problem:

E% @ State s: C'C; goal G: AD.
Ps PY ‘;1 PY : zitlons_gl-: pre, add.
A B c® b () =5: e.g.

(drCB,drBA,drCD,loC,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

5 / 5 V5
drAB drBC
——————0
AC BC cc
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How to Relax During Search: Ignoring Deletes

Real problem:

G% @ State s: AC; goal G: AD.
° PY ‘ﬂ PY : gctlf.ns A: pre, add, del.
A B C D uplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\
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How to Relax During Search: Ignoring Deletes

Real problem:
@ State s: DC; goal G: AD.
@ Actions A: pre, add, del.

[ 4 @ @ @ drCD
|
Greedy best-first search:
(tie-breaking: alphabetic)
We are_here
i drAB drBC
AC BC
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The h™ Heuristic
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:
@ State s: DC; goal G: AD.
@ Actions A: pre, add.
z g “ﬂ ® @ ht(s) =b5: eg.
(drDC,drCB,drBA,loC,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

5 drAB 5 drBC
oO———O0—>
AC BC
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How to Relax During Search: Ignoring Deletes

[ L 4
A B
Greedy best-first search:
(tie-breaking: alphabetic)

We are here

Koehler and Torralba

Artificial Intelligence

Real problem:
@ State s: C'T; goal G: AD.

@ Actions A: pre, add, del.
loC

D e CC — CT.
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
@% @ State s: CT); goal G: AD.
@ Actions A: pre, add.
g h @ h'(s) =4: eg.
(drCB,drBA,drCD,ulD).

@ ®
A B

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

5 drAB 5 drBC
oO———0—>
AC BC
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How to Relax During Search: Ignoring Deletes

Real problem:
E% @ State s: BC, goal G: AD.
@ Actions A: pre, add, del.
@ Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
X
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How to Relax During Search: Ignoring Deletes

Real problem:

G% @ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
® L - ® ) ’
A B Cﬂ D @ drXY loX,ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

BC cc cT DT DD CD
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On the “Accuracy” of h*

Reminder: Heuristics based on ignoring deletes are the key ingredient to
almost all IPC winners of the last decade.

— Why?

— A heuristic function is useful if its estimates are “accurate”. )

How to measure this?

o Known method 1: Error relative to h*, i.e., bounds on

[h*(s) = h(s)].
@ Known method 2: Properties of the search space surface: Local
minima etc.

— For h*, method 2 is the road to success:

— In many benchmarks, under h™, local minima provably do not exist!
[Hoffmann (2005)]
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A Brief Glimpse of h™ Search Space Surfaces

— Graphs = state spaces, vertical height = h™:

“Gripper” “Logistics”

On the side: | am happy Russel/Norvig included these pictures. I'm not so happy that
the text reads as if these illustrations referred to computing the heuristic, rather than

to finding a plan. (And no, the number of states within the relaxed problem is not the
motivation for abstractions. And no, FF does not do iterative deepening, nor restarts.)
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Rt in Graphs

h (Graph-Distance) = real distance

(shortest paths never “walk back™)
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Questionnaire

In this domain, h™ is equal to?
(A): Manhattan Distance. (B): Horizontal distance.
(C): Vertical distance. (D): h*.

— (A): No, relaxed plans can’t walk through walls. (B), (C): No, relaxed plans must
move both horizontally and vertically. (D): Yes, optimal plan = shortest path =
optimal relaxed plan (cf. previous slide).
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How to Compute h*?

Definition (PlanLen™). By PlanLen™, we denote the problem of deciding,
given a planning task I1 and an integer B, whether there exists a relaxed plan
for II of length at most B.

— By computing h™, we solve PlanLen™.

Theorem. PlanLen™ is NP-complete.

Proof. Membership: Easy. Hardness: 1. Trivial from our prior results, because this
generalizes optimal planning under the Only-Adds relaxation, cf. . 2.
However, hardness of optimal Only-Adds comes from hardness of Minimum Cover,
which is easy for sets (add lists) of size < 2. One can prove by reduction from SAT
that PlanLen™ remains hard even with small add lists. Construction outline, example
{Cr={A},C: = {-A}}:

@ Action “SetX;true” for every variable X;: pre empty, add { Atrue, Aset}.

@ Action “SetX; false" for every variable X;: pre empty, add { Afalse, Aset}.

@ Action “SatisfyC;" for every clause Cj: pre Atrue, add C;sat; pre Afalse, add

Cosat.
@ Goal “X;set" for all variables X;, “Cjsat” for all clauses C: Aset, Csat, Czsat.
@ Length bound B := number of variables + number of clauses (= 3 here).
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Hold on a Sec — Where are we?

[P | N U {oo}

P CP
|
[

C

e P: STRIPS planning tasks; h,: Length h* of a shortest plan.

e P’ C P: STRIPS planning tasks with empty delete lists.

@ R: Drop the delete lists.

@ Heuristic function: h™ = h* o R, which is hard to compute.
— We can't compute our heuristic h* efficiently. So we approximate it
instead.
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+: h,FF

Approximating h

Definition (hFF). Let Il = (P, A, I, G) be a planning task with states S.
A relaxed plan heuristic hFF for I is a function hFF : S+ Ny U {oc}
returning the length of some, not necessarily optimal, relaxed plan for s if
a relaxed plan for s exists, and returning hFF(s) = oo otherwise.

Notes:
o hFF > ht ie., hFF never under-estimates ht.
e We may have hFF > h* ie., hfF is not admissible! Thus hFF can be
used for satisficing planning only, not for optimal planning.

Observe: 1 as per this definition is not unique. How do we find
“some, not necessarily optimal, relaxed plan for (P, A, s,G)"?
— In what follows, we consider the following algorithm computing
relaxed plans, and therewith (one variant of ) AFF:

© Chain forward to build a relaxed planning graph (RPG).

@ Chain backward to extract a relaxed plan from the RPG.
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Computing hfF: Relaxed Planning Graphs (RPG)

FD =35, t:= 0

while G Z F; do
Ay :={a € A|pre, C I}
Ft+1 = Ft U UaeAt adda
if Fiy1 = F} then stop endif
t:=t+1

endwhile

— Does this look familiar to you? Could. It's the same algorithm we used to
decide PlanEx™ (slide 26).

“Logistics” example: Blackboard (similar to slide 28).

Are we done? cf. slide 30: “(AJ,..., Al |) can be sequenced to a relaxed
plan”. Could use this as the basis of AFF.

— But this would overestimate vastly!
In “Logistics”, Z?;Ol |A;| =11 > 8 = h*. And now imagine there are 100
packages only one of which needs to be transported ...
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Computing hFF: Extracting a Relaxed Plan

Information from the RPG: (min over an empty set is o0)
@ For p € P: level(p) := min{t | p € F;}.
@ Fora € A: level(a) := min{t | a € A}

M := max{level(p) | p € G}
If M = oo then hFF(s) := oo; stop endif
fort:=0,...,M do
¢ = {g € G| level(g) =t}
endfor
fort:=M,...;1do
for all g € G do
select a, level(a) =t —1, g € adda
for all p € pre, do Giepei(p) := Glevei(py U {p} endfor
endfor
endfor
hFF(s) := number of selected actions

“Logistics” example: Blackboard.
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Computing AF in “TSP” in Australia

RPG:

Fy = {at(Sydney), visited(Sydney)}.

Ao = {drive(Sydney, Adelaide), drive(Sydney, Brisbane)}.

Fy = FoU {at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane)}.

A1 = AoU {drive(Adelaide, Darwin), drive(Adelaide, Perth),
drive(Adelaide, Sydney), drive(Brisbane, Sydney)}.

@ F, = FiU {at(Darwin), visited( Darwin), at(Perth), visited(Perth)}.
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Computing AF in “TSP” in Australia

Inserting the goals:

Fy: at(Sydney), visited(Sydney).

Ao: drive(Sydney, Adelaide), drive(Sydney, Brisbane).

Fy: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

A1 drive(Adelaide, Darwin), drive(Adelaide, Perth),
drive(Adelaide, Sydney), drive(Brisbane, Sydney).

@ Fy: at(Darwin), visited(Darwin), at(Perth), visited(Perth).
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Computing AF in “TSP” in Australia

Supporting the goals at ¢ = 2:
@ Fy: at(Sydney), visited(Sydney).
Ao: drive(Sydney, Adelaide), drive(Sydney, Brisbane).
Fy: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

Ar: drive(Adelaide, Darwin), drive(Adelaide, Perth),
drive(Adelaide, Sydney), drive(Brisbane, Sydney).

@ Fy: at(Darwin), visited(Darwin), at(Perth), visited(Perth).
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Computing AF in “TSP” in Australia

Supporting the goals at t = 1:
@ Fy: at(Sydney), visited(Sydney).
Ao: drive(Sydney, Adelaide), drive(Sydney, Brisbane).
Fy: at(Adelaide), visited(Adelaide), at(Brisbane), visited(Brisbane).

Ar: drive(Adelaide, Darwin), drive(Adelaide, Perth),
drive(Adelaide, Sydney), drive(Brisbane, Sydney).

@ Fy: at(Darwin), visited(Darwin), at(Perth), visited(Perth).
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Other Approximations of At: h™3*

h™a*. Approximate the cost of fact set g by the most costly single fact p € g

0 gCs
W™ (s,9) i= | Mineeapeadd, L+ (s,pre,) g = {p}
maxpecqg h™ (s, {p}) lg| >1

Computing h™2*(s) with the relaxed planning graph algorithm:

@ The h™ value of a fact in a state K™ (s, {p}) corresponds to the layer of
the relaxed planning graph in which it first appeared,

h™2*(s,{p}) = level(p).

@ The h™* value of a state is A™*(s) = maxpeq h™(s, {p}). So, if F; is
the first layer such that G C F;, h™(s) = i.

For example, in TSP Australia: h™**(I) = max(h™(
h™ (1, {v(Ad)}), h™(I,{v(Da)}), h™(I, {v(Pe)}
hmX(I, {at(Sy)})) = maz(0,1,2,2,1,0) = 2.

— Admissible, but very uninformative (under-estimates vastly).

1,{v(5y)}),
), (1, {v(Br)}),
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How Does it All Fit Together?

P N U {0}

R [P’QP
|
|

P: STRIPS planning tasks. h}: Length h* of a shortest plan. P":
STRIPS planning tasks with empty delete lists. R: Drop the delete lists.
h* o R: Length h* of a shortest relaxed plan.

— Use hFF to approximate h* which itself is hard to compute. J

— ht and ™% are admissible; AT is not.
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Before We Begin

Challenge: Given a planning task II, simplify II to obtain a relaxed planning
task IT’, then solve II’ to obtain the heuristic estimate h. All of this must be
fully automatic.

Method 1: IT' := delete relaxation, h := hFF.

This is a HUGE playground! Abstract/relax the world WHICHEVER way!

Methods 2, 3, 4, ... : Up next!

— In what follows, I'm going to give you an overview over the state of the art in
this area.

ATTENTION! You're not going to understand all of this, and it's not intended
for you to understand all of this.

— It's intended as a (hopefully interesting) glimpse into this area, and as an
appetizer for my specialized lecture this winter. (And, no,
it's not relevant to the exam.)
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The 4 Families (That We Know Up To Now)

Ignoring Deletes

Critical Paths

Koehler and Torralba Artificial Intelligence

Abstractions

M&S

LM
hL

Chapter 14: Planning, Part Il
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Abstractions: ldea

Abstract state space:

O ALR ARL
BRL BLR
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Abstractions: Example

2 6 1 2 3 4
5 7 5 6 7
3 4 1

— h = Solution in abstract state space of projected puzzle
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Abstractions: Details

@ What is an abstraction, formally?
— An abstraction is a function o mapping the state space (all world
states) to a (smaller) set of abstract world states.

@ How is the corresponding heuristic function h* defined?

— Given a world state s, h*(s) = hj. (a(s)) where hj., is goal distance in
the abstract state space 6%: The quotient of the state space over the
equivalence relation ~ where s ~ t iff a(s) = a(t).

@ What is a pattern database heuristic?

— A pattern database heuristic (PDB) is an abstraction heuristic h® where
« is a projection, i.e., a(s) = «(t) iff s and t agree on a subset of the state
variables (e.g., those encoding the positions of 1,...,7 and the blank).

@ What is a merge-and-shrink heuristic?

— A merge-and-shrink heuristic (M&S) is an abstraction heuristic h*
constructed by starting with projections on single variables, then iteratively
merging two abstractions (replacing them with their synchronized product)
and shrinking an abstraction (aggregating pairs of abstract states).
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Abstractions: (Some) Recent Results

Q

Q

“Recent”: The last 5 or so years.

“Some”: A sample of results that | personally find interesting.

Automatic generation of pattern database heuristics [Haslum et al.
(2007)]: Find a collection of patterns by hill-climbing in the space of
pattern collections, pruning useless choices based on the causal graph.

Shrinking by bisimulation [Nissim et al. (2011)]: Bisimulation is a
well-known concept from Verification. If we use it in merge-and-shrink
[Helmert et al. (2007, 2014)], to decide which abstracts to aggregate when
shrinking an abstraction, we get the perfect heuristic, h® = h*; but this is
prohibitively expensive. Conservative label reduction can yield exponential
savings at no information loss.

Shrinking by approximate bisimulation [Katz et al. (2012)]: To trade
accuracy for speed, need coarser notion of state similarity. K-catching
bisimulation is bisimulation relative to an action subset K; choosing K
enables the trade-off (and is loss-free in certain cases).
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Landmarks: Example

Problem: Bring key B to position 1.
2 3 4 5 6 7

2 N
|
\B rd
(Egg ,A\‘f,w [\ é%
Landmarks:

@ robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7.
@ Lock-open.

@ Have-key-A.

@ Have-key-B.

° ...

1

— h = “Number of open items on the to-do list”
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Landmarks: Details

@ What is a fact landmark?
— A fact landmark for a state s is a fact that must be true at some point
along any plan for s.

@ What is a disjunctive action landmark?
— A disjunctive action landmark for a state s is a set of actions L at least
one of which must be used by any plan for s.

@ How can we turn a fact landmark into a disjunctive action landmark?
— If p is a fact landmark for s, and p is not true in s, then the set L of all
actions whose effect includes p is a disjunctive action landmark for s.

@ Can all disjunctive action landmarks be derived that way?

— No! (Simple counting argument; alternative solution paths.)
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Landmarks: (Some) Recent Results

@ Inadmissble LM £ for satisficing planning in LAMA [Richter and
Westphal (2010)]: Find fact LMs for initial state, incremental
maintenance of open LMs for search states. h =count of open LMs.

@ Admissible LM h for optimal planning [Karpas and Domshlak
(2009)]: Find fact LMs for initial state, incremental maintenance of open
LMs for search states; consider the induced disjunctive action LMs.

h =admissible combination, using cost partitioning.

@ LM-cut [Helmert and Domshlak (2009)]: Find disjunctive action LMs
anew for every search state, using iterated cuts in a graph over facts,
where edges (p, ¢) correspond to actions with p in precondition and ¢ in
effect. The best admissible heuristic we have at this point!

@ From landmarks via hitting sets to 2™ [Bonet and Helmert (2010)]:
Any plan must be a hitting set for all disjunctive action LMs. Thus the
minimum cost hitting set yields an admissible heuristic. Given sufficiently
many LMs, this is equal to AT ...!
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Critical Paths: Example

Northern
Territory
Queensland
Australia
Western h
Australia un?'\e

South
Australia

"_}f_’g de Canberra
°

Victoria

o
Meibourne

— h! = Most Expensive 1-Sub-Tour
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Critical Paths: Example

Koehler and Torralba

Pon
Moresby

Northern
Territory

Queensland

Australia

South
Australia

"_}f_’g de Canberra
°

Victoria

o
Meibourne

— h? = Most Expensive 2-Sub-Tour
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Critical Paths: Example

Koehler and Torralba

Pon
Moresby

Northern
Territory

Queensland

Australia

South
Australia

"_}f_’g de Canberra
°

Victoria

o
Meibourne

— h™ = Most Expensive m-Sub-Tour
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Critical Paths: Details

@ How is h! defined?
hl(s) := h'(s,G) where h'(s,g) is the point-wise greatest function that
satisfies h'l(s,g) =

0 gCs
minaGA,regr(g,a) is defined C(a) + hl(sv reg?“(g, (l)) |g| =1
maxy eq h' (s, {g'}) lgl > 1

— This is the same as h™® (cf. slide 48).

@ How is h™ defined?
h™(s) := h™(s,G) where h™ (s, g) is the point-wise greatest function that
satisfies h"™(s,g) =

0 gCs
minaEA,regr(g,a) is defined C(CL) + A (5, T’@g’l’(g, a)) |q‘ <m
maxg cg,g/|<m W™ (s, 9) lg| >m
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Critical Paths: (Some) Recent Results

@ Compiling 2™ into h! [Haslum (2009)]: Given planning task II,
construct a compiled task I such that h!(IT™) = h™(II). II™ represents
all fact conjunctions ¢ of size < m explicitly, i.e., via a new fact 7. whose
truth represents truth of c.

@ Marriage of h™ with h™ [Keyder et al. (2014)]: Given planning task
II, choose a set C' of fact conjunctions and construct a compiled task TI¢
representing C' explicitly, such that:

@ AT > hC and KT (1Y) > ht. (hC: Version of h™ taking into
account sub-goals C.)

@ At < AH(II%) < h*(10).

@ For suitable C, h*(I1¢) = h*(I1).

— Interpolates between h™ and h*. Systematic method for “taking some
deletes into account”.

— Unfortunately, ||[TI”|| grows exponentially in |C|. But: See next.
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Ignoring Deletes: (Some) Recent Results

@ Efficient marriage of 1™ with h™ [Fickert et al. (2016)]: Actually one
can characterize h*(II¢) in terms of the original planning task II, avoiding
the compilation altogether while preserving (1-3); and computing 2" (I1¢)
in polynomial time.

@ Automatic it search space surface analysis [Hoffmann (2011)]: One
can identify classes of planning tasks whose surface has particular
properties (absence of local minima), based on properties of the “causal
graph” and “domain transition graphs”. This connection can be exploited
for automatic analysis predicting “how difficult” a task is for delete
relaxation heuristics.

@ Relaxing only some of the state variables [Domshlak et al. (2015)]:
Red variables accumulate their values (= delete-relaxed semantics), black
variables switch between them (= regular semantics). Allows to
systematically “take some deletes into account”, interpolating between h+
and h*.
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And, BTW: “Compilability” Between the Families

— Framework and results by [Helmert and Domshlak (2009)]:

Ignoring Deletes I VIS B Abstractions
it h™* ZM&S  ppB <
hmax i M&S

max — 7,LM
pmax = pL

htM APDB
htM <M&S
M&S# htV

hmax — hl

hl <M&S
h™ £AM&S

Critical Paths Landmarks

Al <

h? < Bl = pM
h3 < -t
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Questionnaire

What do you think the compilability results are good for?
(A): Nothing. (B): Theory.
(Q): (D): Inventing new solvers.

— (A): Nope, definitely good for something.
— (B): Certainly good for that :-)

— (C): To some extent, yes: If it emerges that heuristic h* is generally
dominated by heuristic hZ, then there is good reason to use hE.

— (D): Big big YES! Remember | mentioned LM-cut as the strongest
admissible heuristic we have at this point? LM-cut was discovered as a
side-product of proving that k' can be compiled into landmarks heuristics!
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Summary

@ Heuristic search on classical search problems relies on a function A
mapping states s to an estimate h(s) of their goal distance. Such
functions h are derived by solving relaxed problems.

@ In planning, the relaxed problems are generated and solved automatically.
There are four known families of suitable relaxation methods: abstractions,
landmarks, critical paths, and ignoring deletes (aka delete relaxation).

@ The delete relaxation consists in dropping the deletes from STRIPS
planning tasks. A relaxed plan is a plan for such a relaxed task. h*(s) is
the length of an optimal relaxed plan for state s. h* is NP-hard to
compute.

@ hFF approximates ht by computing some, not necessarily optimal, relaxed
plan. That is done by a forward pass (building a relaxed planning graph),
followed by a backward pass (extracting a relaxed plan).
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Topics We Didn't Cover Here

Abstractions, Landmarks, Critical-Path Heuristics, Cost Partitionings,
Compilability between Heuristic Functions, Planning Competitions:
— Upcoming course

Tractable fragments: Planning sub-classes that can be solved in polynomial
time. Often identifed by properties of the “causal graph” and "domain
transition graphs”. —

Planning as SAT: Compile length-k bounded plan existence into
satisfiability of a CNF formula . Extensive literature on how to obtain
small ¢, how to schedule different values of k, how to modify the
underlying SAT solver.

Compilations: Formal framework for determining whether planning
formalism X is (or is not) at least as expressive as planning formalism Y.
Admissible pruning/decomposition methods: Partial-order reduction,
symmetry reduction, simulation-based dominance pruning, factored
planning, decoupled search. —

Numeric planning, temporal planning, planning under uncertainty: ...
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Reading (RN: Same As Previous Chapter)

@ Chapters 10: Classical Planning and 11: Planning and Acting in the Real
World [Russell and Norvig (2010)].

Content: Although the book is named “A Modern Approach”, the planning
section was written long before the IPC was even dreamt of, before PDDL
was conceived, and several years before heuristic search hit the scene. As
such, what we have right now is the attempt of two outsiders trying in vain
to catch up with the dramatic changes in planning since 1995.

Chapter 10 is Ok as a background read. Some issues are, imho,
misrepresented, and it's far from being an up-to-date account. But it's Ok
to get some additional intuitions in words different from my own.

Chapter 11 is annoyingly named (I've seen lots of classical planning in the

“real world"), but is useful in our context here because | don't cover any of
it. If you're interested in extended/alternative planning paradigms, do read
it.
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Reading, ctd.

@ The FF Planning System: Fast Plan Generation Through Heuristic Search
[Hoffmann and Nebel (2001)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/jairO1.pdf

Content: The main reference for delete relaxation heuristics.

® Semi-Relaxed Plan Heuristics [Keyder et al. (2012)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/icapsi2a.pdf

Content: Computes relaxed plan heuristics within a compiled planning task
1€, in which a subset C of all fact conjunctions in the task is represented
explicitly. C' can in principle always be chosen so that th is perfect, so
the technique allows to interpolate between At and h*. In practice, small
sets C' sometimes suffice to obtain dramatically more informed relaxed plan

heuristics.
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