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Introduction
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A (Constraint Satisfaction) Problem
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Constraint Satisfaction Problems

What is a constraint?
A constraint is a condition that every solution must satisfy.

What is a constraint satisfaction problem?

Given:
@ A set of variables, each associated with its domain.
@ A set of constraints over these variables.

Find:

@ An assignment of variables to values (from the respective domains),
so that every constraint is satisfied.
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A Constraint Satisfaction Problem

— Problem: SuDoKu.
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@ Variables: Content of each cell.
e Domains: Numbers 1,...,9.
o Constraints:
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Another Constraint Satisfaction Problem

— (Our Main lllustrative) Problem: Coloring Australia.

Tasmv'a

e Variables: WA, NT, SA, Q, NSW, V, T.
o Domains: red, green, blue.
o Constraints: Adjacent states must have different colors.
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Another Constraint Satisfaction Problem

— Problem: Graph Coloring. NP-hard for k£ = 3.

Tasmv'a

o Variables: Vertices in a graph.
e Domains: k different colors.
o Constraints: Adjacent vertices must have different colors.
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Bundesliga Constraints

Variables: v4ys g where A and B are teams, with domain {1,...,34}:
For each match, the (ID of the) “Spieltag” where it is scheduled.

1. Bundesliga

£ DF8-Polal, Champlons-Laague, turopa-Leagus, Lindorspisla

(Some) Constraints:
@ Forall A,B: vaywsp <17 < vpBys.4 OF
vpvs.A < 17 < vavs.p (each pairing exactly
once in each half-season).
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How to Solve the Bundesliga Constraints?

Jorg’s personal pre-study attempts:

How do they actually do it? Modern computers and CSP methods: fractions
of a second. 19th (20th/21st?) century: Combinatorics and manual work.
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Some Applications

Traveling Tournament Problem Scheduling

Timetabling
R
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Our Agenda for This Topic

— Our treatment of the topic “Constraint Satisfaction Problems”
consists of Chapters 8 and 9.

° Basic definitions and concepts; naive backtracking
search.
— Sets up the framework. Backtracking underlies many successful
algorithms for solving constraint satisfaction problems (and,
naturally, we start with the simplest version thereof).

° Inference and decomposition methods.

— Inference reduces the search space of backtracking.
Decomposition methods break the probem into smaller pieces. Both
are crucial for efficiency in practice.
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Our Agenda for This Chapter

@ Constraint Networks and Assignments, Consistency, Solutions: How
are constraint satisfaction problems defined? What is a solution?

— Get ourselves on firm ground.

@ Naive Backtracking: How does backtracking work? What are its main
weaknesses?
— Serves to understand the basic workings of this wide-spread algorithm,
and to motivate its enhancements.

@ Variable- and Value Ordering: How should we give direction to a
backtracking search?

— Simple methods for making backtracking aware of the structure of the
problem, and thereby reduce search.
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Constraint Networks: Informal

Constraint Networks: Informal Definition

A constraint network is defined by:
@ A finite set of variables.
@ A finite domain for each variable.

@ A set of constraints (here: binary relations).

— We're looking for a solution to the network, i.e., an assignment of
variables to values (from the respective domains), so that every
constraint is satisfied.

Terminology:

@ It is common to say constraint satisfaction problem (CSP) instead of
constraint network.

@ Strictly speaking, however, “CSP" is the algorithmic problem of
finding solutions to constraint networks.
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Constraint Networks: Formal

Definition (Constraint Network). A (binary) constraint network is a triple
~v=(V,D,C) where:
o V ={vy,...,v,} is a finite set of variables.
e D={D,,,...,D,, } is a corresponding set of finite domains.
@ C = {C{yu,v}} is a set of binary relations (constraints), where for each
Cluwy we have u,v € V, u# v, and Cry 3 € Dy X D,.
We require that Cyy vy, Cayy € C = {u,v} # {z,y}. We will write
Cluy instead of Cyy, ) for brevity.

Notes:

@ (), = permissible combined assignments to u and v.

@ Relations are the maximally general formalization of constraints. In
illustrations, we often use abbreviations, e.g. “u # v" etc.

@ There is no point in having two constraints Cy,, and C!, constrain the
same variables v and v, because

o Cy, is identified by its set {u,v} of variables; the order we choose for the
relation is arbitrary.
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Example: Coloring Australia

Northern
Territory

Western

I Queensland
Australia

South
Australia

New South Wales

Victoria

Tasmania

e Variables: V = {WA, NT,SA, Q,NSW,V, T}.
@ Domains:

— If all variables have the same domain, abusing notation we will
write D to denote that “global” domain.
o Constraints:
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Constraint Networks: Variants

Extensions:

e Infinite domains. (E.g., D, = R in Linear Programming.)

e Constraints of higher arity, i.e., relations over k > 2 variables. (E.g.,
propositional CNF satisfiability — )

Unary Constraints:

@ A unary constraint is a relation C', over a single variable, i.e., a
subset C, C D, of that variable’s domain.

@ A unary constraint C, is equivalent to
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Example: SuDoKu

2|5 31 19| |1
1 4
41 |7 2, |8
512
9|8]1
4 3
3|6 72
7 3
9, |3 6 |4

e Variables: V = {v;; | 1 <4,5 < 9}: v;; =cell row i column j.
e Domains: ForallveV: D, =D ={1,...,9}.
e Unary Constraints:
e Binary Constraints: Cvijvi,j, ="vij vy, e,
Cuyyvy, ={(d,d’) € Dx D[ d#d'}, for:
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Questionnaire

— Problem: Place 8 queens so that they don't attack each other.

How to encode this into a constraint network? Variables?
Domains? Constraints?
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CSP and General Problem Solving

(some new constraint-reasoning problem)

—

describe problem as a constraint network — use off-the-shelf CSP solver

il

(its solution)

@ Constraint networks=generic language to describe this kind of
problem.

@ CSP solvers=generic algorithms solving such problems.

@ The next time you play SuDoKu, just write the game down in CSP
format and use an off-the-shelf solver.

@ On the first practical exercise sheet, this is the kind of thing you will
be doing ...
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Assignments and Consistency

Definition (Assignment). Let v = (V, D, C) be a constraint network.
A partial assignment is a function a : V' — J, oy, D, where V! C'V and
a(v) € D, forallveV'. If V' =V, then a is a total assignment, or
assignment in short.

— A partial assignment assigns some variables to values from their
respective domains. A total assignment is defined on all variables.

Definition (Consistency). Let v = (V, D, C) be a constraint network,
and let a be a partial assignment. We say that a is inconsistent if there
exist variables u,v € V' on which a is defined, with Cy,, € C and
(a(u),a(v)) & Cuy. In that case, a violates the constraint Cy,,. We say
that a is consistent if it is not inconsistent.

— Partial assignment inconsistent = “already violates a constraint”.
(Trivially consistent: The empty assignment.)
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Example: Coloring Australia

4 4o
wh =

Is this partial assignment Is this partial assignment
consistent? consistent?
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Solutions

Definition (Solution). Let v = (V, D, C) be a constraint network. If a
is a total consistent assignment, then a is a solution for . If a solution
to v exists, then 7y is solvable; otherwise, vy is inconsistent.

Example “Coloring Australia”:

@ Variables: V = {WA, NT,SA, Q, NSW,V,T}.
@ Domains: Allv e V: D, = D = {red, green, blue}.
‘ @ Constraints:

~

@ Solution: { WA = red, NT = green, SA = blue,
Q = red, NSW = green, V.= red, T = green}.

— Note: This is not the only solution. E.g., we can permute the colors, and
Tasmania can be assigned an arbitrary color.
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Consistency vs. Extensibility

Definition. Let v = (V, D, C) be a constraint network, and let a be a
partial assignment. We say that a can be extended to a solution if there
exists a solution a’ that agrees with a on the variables where a is defined.
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Questionnaire

Which of the following statements imply that the empty
assignment, ag, can always be extended to a solution?

(A): ao is consistent. (B): The network is inconsistent.

(C): There are no binary (D): The network is solvable.

constraints.
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000000

Computational Complexity of CSP

Input size vs. solution space size: Assume constraint network v with n
variables, all with domain size k.

@ Number of total assignments: k™.
@ Size of description of v: nk for variables and domains; at most n?
constraints, each of size at most k¥ = O(n%k?).

— The number of assignments is exponentially bigger than the size of ~.

It is therefore no surprise that:
Theorem (CSP is NP-complete). It is NP-complete to decide whether
or not a given constraint network -y is solvable.

Proof. Membership in NP: Just guess a total assignment a and verify
(in polynomial time) whether a is a solution.

NP-Hardness: The special case of graph coloring (our illustrative
example) is known to be NP-hard.
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Questionnaire

5(8)7 6]9(4|1 5|87 6]9(4|1

918|1|4|3|5|7 918 413 |57
4 719 51268 4 719 51268
319(512|7|114/8|6 319(512|7|114/8|6
716(214/9|8]1(3|5 7(6/21419/8]1|3|5
8141116/5(317/2/9 814[116/5/31712/9
1(8/4]3|6/9]5|7]|2 1/81413[6/9]5|7]|2
517161114218 (9|3 5171611(4/218]9|3
912[3]15/8|7]6/1/4 912131518/ 7]6/1/4

Can this partial assignment be Can this partial assignment be

extended to a solution? extended to a solution?
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Before We Begin

Basic Concepts

@ Search: Depth-first enumeration of partial assignments.
@ Backtracking: Backtrack at inconsistent partial assignments.

@ Inference: Deducing tighter equivalent constraints to reduce search
space (backtracking will occur earlier on).

Up next: Naive backtracking, no inference.

Next Chapter: Backtracking with inference.
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Naive Backtracking

Call with input constraint network ~ and the empty assignment a:

function NaiveBacktracking(a) returns a solution, or “inconsistent”
if a is inconsistent then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d € D, in some order do
a :=aU{v=d}
a” = NaiveBacktracking(a’)
if a”’ # “inconsistent” then return o”
return “inconsistent”

— Backtracking=Recursively instantiate variables one-by-one, backing up out of
a search branch if the current partial assignment is already inconsistent. J

— Why is this better than enumerating, and solution-checking, all total
assignments (cf. slide 9)7?
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Example: Coloring Australia
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Naive Backtracking, Pro and Contra

Pro:

e Naive backtracking is extremely simple. (You can implement it on a
Commodore 128.)

@ Despite this simplicity, it is much more efficient than enumerating
total assignments. (You can implement it on a Commodore 128,
and solve the Bundesliga.)

o Naive backtracking is complete (if there is a solution, backtracking
will find it).

Contra:

@ Backtracking does not recognize a that cannot be extended to a
solution, unless a is already inconsistent.
— Employ inference to improve this! ( )-
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Naive backtracking, Pro and Contra: Illustration

Much more efficient than enumerating total as-

sighments:
51817 16]9]4]|1
918|1/4]3|5|7 .

4 719 512168 Does not recognize a that cannot be extended
319(51217111418]6 to a solution, unless a is already inconsistent:
716/2]14(19/8]1(3]|5
8l4(1]6/5(3]17[2]9
1/8/4]13]|6|9]5|7|2
5/716]1/4(218[9|3
9/2(3]5/8(7]16]1(4

— "Human SuDoKu playing” = lots of inference!
(You want to minimize the number of failed attempts
to keep track of on paper ...)
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Questionnaire

Say G is a clique of n vertices, and we run backtracking for graph
coloring with n different colors. How big is the search space
(consistent partial assignments) of naive backtracking?

(A): n (B): n!

(C): 1—1—21071* <k (n —1) (D): n™

If G is a line and we order variables left-to-right?

(A): 14305 nx % (n—1) (B): 1+ 375 n* (n— 1)
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Questionnaire, ctd.

aaaaaaaa

Variable order WA, NT, Q, NSW, V,T,SA. Tightest upper bound
on naive backtracking search space size?

(A): 145 (B): 382
(C): 433 (D): 37
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What to Order, Where, in Naive Backtracking

function NaiveBacktracking(, a) returns a solution, or “inconsistent”
if a is inconsistent with 7 then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d € D, in some order do
a:=aU{v=d}
a” := NaiveBacktracking(y, a’)
if a”’ # “inconsistent” then return o
return “inconsistent”

— The order in which we consider variables and their values may have a
huge impact on search space size!
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Example: Coloring Australia

@ WA, NT, Q@ as on slide 32 = 3%2x2.
@ Any ideas for better variable orders?
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Variable- and Value Ordering

Variable Ordering:
@ Naive backtracking does not specify in which order the variables are
considered.

@ That ordering often dramatically influences search space size. (Cf.
previous slide, and slide 36 vs. slide 44.)

Value Ordering:
@ Naive backtracking does not specify in which order the values of the
chosen variable are considered.

@ If no solution exists below current node: Doesn't matter, we will
have to search the whole sub-tree anyway.

@ If solution does exist below current node: Does matter. If we always
chose a “correct” value (from a solution) then no backtracking is
needed.
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Variable Ordering Strategy, Part |

A commonly used strategy: most constrained variable first. Always
pick a variable v with minimal |{d € D, | a U {v = d} is consistent}|.

ESEA S S o

— By choosing a most constrained variable v first, we reduce the
branching factor (number of sub-trees generated for v) and thus reduce
the size of our search tree.

— Extreme case: If |[{d € D, | aU {v = d} is consistent}| = 1, then the
value assignment to v is forced by our previous choices.
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Variable Ordering Strategy, Part Il

Another commonly used strategy: most constraining variable first.
Always pick v with maximal [{u € V | a(u) is undefined, C,,,, € C'}|.

ESEaS e Saae

— By choosing a most constraining variable first, we detect
inconsistencies earlier on and thus reduce the size of our search tree.

Commonly used strategy combination: From the set of most
constrained variables, pick a most constraining variable.

mp Uy Ry O

Koehler and Torralba Artificial Intelligence Chapter 09: Constraint Satisfaction Problems, Part | 42/48



V/V Ordering
000000

Value Ordering Strategy

A commonly used strategy: least constraining value first. For variable
v, always pick d € D, with
minimal [{d' | d’ € Dy, a(u) is undefined, C, € C, (d',d) & Cyp}|-

‘ Allows 1 value for SA
NS e =S <
‘ Allows 0 values for SA

— By choosing a least constraining value first, we increase the chances
to not rule out the solutions below the current node.

— Compare slide 40: We want to choose a “correct” value.
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Questionnaire

Variable order SA, NT, Q, NSW,V, WA, T. Tightest upper bound
on naive backtracking search space size?

(A): 52 (B): 145
(C): 382 (D): 433
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Summary

@ Constraint networks v consist of variables, associated with finite domains,
and constraints which are binary relations specifying permissible value
pairs.

@ A partial assignment a maps some variables to values, a total assignment
does so for all variables. a is consistent if it complies with all constraints.
A consistent total assignment is a solution.

@ The constraint satisfaction problem (CSP) consists in finding a solution for
a constraint network. This has numerous applications including, e.g.,
scheduling and timetabling.

@ Backtracking instantiates variables one-by-one, pruning inconsistent partial
assignments.

@ Variable orderings in backtracking can dramatically reduce the size of the
search tree. Value orderings have this potential (only) in solvable sub-trees.

— . Inference and decomposition, for improved efficiency.
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Reading

@ Chapter 6: Constraint Satisfaction Problems, Sections 6.1 and 6.3 [Russell
and Norvig (2010)].

Content: Compared to our treatment of the topic “Constraint Satisfaction
Problems” (Chapters 8 and 9), RN covers much more material, but less
formally and in much less detail (in particular, my slides contain many
additional in-depth examples). Nice background/additional reading, can't
replace the lecture.

Section 6.1: Similar to my “Introduction” and “Constraint Networks”,
less/different examples, much less detail, more discussion of
extensions/variations.

Section 6.3: Similar to my “Naive Backtracking” and “Variable- and Value
Ordering”, with less examples and details; contains part of what | cover in
Chapter 8 (RN does inference first, then backtracking). Additional
discussion of backjumping.
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