
Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Artificial Intelligence
08. Predicate Logic Reasoning, Part II: Reasoning

And Now: How to Actually Think in Terms of Predicates

Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Prof. Hoffmann for slide sources

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 1/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Agenda

1 Introduction

2 Reduction to Propositional Reasoning

3 Substitutions, and Unification

4 PL1 Resolution

5 On Criminals and Cats: PL1 Resolution Examples

6 Conclusion

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 2/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Let’s Reason About Blocks, Baby . . .

I asked: What do you see here?

A D B E C

You said: “All blocks are red”; “All blocks are on the table”; “A is a
block”.

I said: From propositional logic “AllBlocksAreRed” and “isBlockA”, we
can’t conclude that A is red, because these are treated like atomic
statements, ignoring their inner structure (“all blocks”, “is a block”).

Predicate Logic: “∀x[Block(x)→ Red(x)]”; “Block(A)”.

→ All fine, but how do we conclude in PL1 that A is red?

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 4/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Reminder: Our Agenda for This Topic

→ Our treatment of the topic “Predicate Logic Reasoning” consists of
Chapters 12 and 13.

Chapter 12: Basic definitions and concepts; normal forms.

→ Sets up the framework and basic operations.

This Chapter: Compilation to propositional reasoning; unification;
lifted resolution.

→ Algorithmic principles for reasoning about predicate logic.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 5/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Our Agenda for This Chapter

Reduction to Propositional Reasoning: Can we reduce PL1
reasoning to propositional reasoning?

→ Yes we can! (But it’s tricky, and involves generating huge
grounded encodings . . .)

Substitutions, and Unification: What basic operations are
required to avoid grounding everything out?

→ Specifies how to instantiate variables with terms.

PL1 Resolution: How do we reason directly at PL1 level?

→ The foundational procedure for doing so.

On Criminals and Cats: And now, in practice?

→ Gives some examples.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 6/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Reasoning About PL1 Via Propositional Logic?

What for do we need PL1, then?

“First-order logic as syntactic sugar for propositional logic.”

Remember all these propositions in the Wumpus world?

Anyway, it’s of course not that easy in general (cf. slide 12).

How?

Reasoning About PL1 Via Propositional Logic

1 Bring into Skolem normal form (SNF).

2 Generate (the finite subsets of) the Herbrand expansion (up next).

3 Use propositional reasoning.

→ Apply DPLL, clause learning, . . .

Herbrand expansion may be very large (infinite, in general).

Still, this often works well in practice.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 8/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Herbrand Expansion

We assume: Skolem normal form. (We don’t require ϕ to be in CNF.)

universal prefix + (quantifier-free) matrix

∀x1∀x2∀x3 . . . ∀xn ϕ

Notation: For any (finite) set θ∗ of PL1 formulas, denote by CF (θ∗) the set of
constant symbols, and of function symbols (arity ≥ 1), occuring in θ∗. If no
constant symbol occurs in θ∗, we add a new such symbol c into CF (θ∗).

Definition (Herbrand Universe). Let θ∗ be a set of PL1 formulas in SNF.
Then the Herbrand universe HU(θ∗) over θ∗ is the set of all ground terms that
can be formed from CF (θ∗).

Example: θ∗ = {∀x[¬Dog(x) ∨ Chases(x, f(x))]}
CF (θ∗) ={c, f}; HU(θ∗) ={c, f(c), f(f(c)), . . . }.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 9/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Herbrand Expansion, ctd.

Definition (Herbrand Expansion). Let θ∗ be a set of PL1 formulas in
SNF. The Herbrand expansion HE(θ∗) is defined as:

HE(θ∗) = {ϕx1
t1
, . . . ,

xn
tn
| (∀x1 . . . ∀xnϕ) ∈ θ∗, ti ∈ HU(θ∗)}

→ Instantiate each matrix ϕ with all terms from HU(θ∗). As HE(θ∗)
contains ground atoms only, it can be interpreted as propositional logic.

Example: θ∗ = {∀x[¬Dog(x) ∨ Chases(x, f(x))]}
→ HE(θ∗) = {[¬Dog(c) ∨ Chases(c, f(c))],
[¬Dog(f(c)) ∨ Chases(f(c), f(f(c)))], . . . }.

Theorem (Herbrand). Let θ∗ be a set of PL1 formulas in SNF. Then θ∗

is satisfiable iff HE(θ∗) is satisfiable. (Proof omitted.)

→ Observe: Without function symbols, the Herbrand expansion is finite,
and PL1 reasoning is equivalent to propositional reasoning.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 10/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

When Herbrand Reasons About Blocks . . .

Example: KB = {∀x[Block(x)→ Red(x)],Block(A)}

A D B E C

Want: Deduce that A is red, i.e., KB |= ϕ for ϕ := Red(A).

Deduction: θ := KB ∪ {¬ϕ} is unsatisfiable iff KB |= ϕ.

Skolem normal form θ∗: {∀x[¬Block(x) ∨ Red(x)], Block(A),
¬Red(A)}

Herbrand universe: HU(θ∗) = {A}
Herbrand expansion: HE(θ∗) = {[¬Block(A) ∨ Red(A)], Block(A),
¬Red(A)}

Proof of Red(A): E.g., unit propagation on the clause set ∆
corresponding to HE(θ∗) yields the empty clause.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 11/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Herbrand: The Infinite Case

→ Recall: Without function symbols, the Herbrand expansion is finite,
and PL1 reasoning is equivalent to propositional reasoning.

→ But what if there are function symbols?

Theorem (Compactness of Propositional Logic). Any set θ of
propositional logic formulas is unsatisfiable if and only if at least one
finite subset of θ is unsatisfiable. (Proof omitted.)

Method: Enumerate all finite subsets θ1 of the Herbrand expansion
HE(θ∗), and test propositional satisfiability of θ1. θ is unsatisfiable if
and only if one of the θ1 is. Only . . . which θ1 will do the job?

→ If the Herbrand expansion is infinite, to show unsatisfiability (= to
prove that some property does indeed follow from the KB), we must
somehow choose a “relevant” finite subset thereof.

→ Direct PL1 reasoning ameliorating this caveat: later in this chapter.
Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 12/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Herbrand, Infinite Case: What If θ is Satisfiable?

Theorem (A). The set of unsatisfiable PL1 formulas is recursively
enumerable.

Proof. Enumerate all PL1 formulas ϕ. Incrementally for all of these in parallel,
enumerate all finite subsets θ1 of the Herbrand expansion HE(ϕ∗). Test
propositional satisfiability of each θ1. By compactness of propositional logic, if
HE(ϕ∗) is unsatisfiable then one of the θ1 is.

Theorem (B). It is undecidable whether a PL1 formula is satisfiable.
(Proof omitted.)

Corollary. The set of satisfiable PL1 formulas is not recursively
enumerable. (Proof: Else, with Theorem (A), PL1 satisfiability would be
decidable, in contradiction to Theorem (B).)

→ If a PL1 formula is unsatisfiable, then we can confirm this. Otherwise,
we might end up in an infinite loop.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 13/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Questionnaire

Question!

What is the Herbrand universe HU(θ∗) of
θ∗ = {∀x[Equals(x, succ(f(x)))], ∀x¬Equals(1, succ(x))}?
(A): {1}.
(C): {1, succ(1),

succ(succ(1)), . . . }.

(B): {1, f, succ}.
(D): {1, f(1), succ(1),

succ(f(1)), f(succ(1)), . . . }.

→ (A): No, we need the entire set of terms.

→ (B): No, we need terms not just function symbols.

→ (C): No, we need all possible terms.

→ (D): Yes: Enumerate all ways in which functions can be applied to constant
symbols.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 14/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Questionnaire, ctd.

Question!

Is the Herbrand expansion of θ∗ = {∀x[Equals(x, succ(f(x)))],
∀x¬Equals(1, succ(x))} satisfiable?

(A): Yes. (B): No.

→ The correct answer is “No”.

The easy way: “Every x is the successor of some other number” (namely of
f(x)) together with “1 is not the successor of any other number” is not
satisfiable. The same is, then, true of the Herbrand expansion simply by
Herbrand’s theorem (slide 10).

The hard way: Pretend you’re a computer. Choose a finite unsatisfiable subset
of HE(θ∗). → Suggestions for a finite subset of HU(θ∗)?

→ Turns out we can use {1, f(1)}. Matrix of the first formula, instantiated with
1, gives Equals(1, succ(f(1))). Matrix of the second formula, instantiated with
f(1), gives ¬Equals(1, succ(f(1))). Done with a single resolution step.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 15/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Towards PL1 Resolution

Clausal normal form:

universal prefix + disjunction of literals

∀x1∀x2∀x3 . . . ∀xn(l1 ∨ · · · ∨ ln)

→ Written {l1, . . . , ln}.

→ The quantifiers are omitted in the notation!

Example: {{Nat(s(x)),¬Nat(x)}, {Nat(1)}}

We want to somehow apply/adapt the resolution rule:

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 17/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Towards PL1 Resolution, ctd.

What about this:

→ {{Nat(s(1)),¬Nat(1)}, {Nat(1)}} |= {Nat(s(1))}? Yes.

→ And {{Nat(s(1)),¬Nat(1)}, {Nat(1)}} ` {Nat(s(1))}? Yes, if we
allow to resolve PL1 literals whose atoms are identical.

And what about this?

→ {{Nat(s(x)),¬Nat(x)}, {Nat(1)}} |= {Nat(s(1))}? Yes, due to the
universal quantification (clausal normal form, cf. previous slide).

→ But {{Nat(s(x)),¬Nat(x)}, {Nat(1)}} ` {Nat(s(1))}? No, the
atoms aren’t identical.

→ We need a way to make them identical: unification! Based on the
notion of substitution. Here: {x1}.

→ Applying a substitution specializes the clause, which is valid because
the variables are universally quantified.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 18/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Substitutions

Definition (Substitution). A substitution s = {x1
t1
, . . . , xn

tn
} is a

function that substitutes variables xi for terms ti, where xi 6= ti for all i.
Applying substitution s to an expression ϕ yields the expression ϕs,
which is ϕ with all occurrences of xi simultaneously replaced by ti.

→ Variable instantiation and renaming, as used in the prenex and Skolem
transformations as well as in the Herbrand expansion, is a special case of
substitution.

Example: For s = {xy ,
y

h(a,b)}, P (x, y)s = P (y, h(a, b)).

Remember: x, y, z, v, w, . . . : variables; a, b, c, d, e, . . . : constants.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 19/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Substitution Examples

Remember: x, y, z, v, w, . . . : variables; a, b, c, d, e, . . . : constants.

Examples: Can we apply a substitution to P (x, f(y), b) so that it
becomes:

(1) P (z, f(w), b): Yes: s = {xz ,
y
w}

(2) P (x, f(a), c)? No; b
c not possible because b is a constant, not a

variable.

(3) P (y, f(h(a, b, w)), b)? Yes: s = {xy ,
y

h(a,b,w)}

(4) Q(x, f(y), b)? No. The predicate symbols must be the same.

(5) P (x, f(f(y)), b)? Yes: s = { y
f(y)}.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 20/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Composing Substitutions

Definition (Composition). Given substitutions s1 and s2, by s1s2 we
denote the composed substitution, a single substitution whose outcome is
identical to s2 ◦ s1.

Example: With s1 = { z
g(x,y) ,

v
w} and s2 = {xa ,

y
b ,

w
v ,

z
d}, we have

P (x, y, z, v)s1s2 = P (a, b, g(a, b), v).

How to obtain s1s2 given s1 and s2?

(i) Apply s2 to the replacement terms ti in s1.

(ii) For any variable xi replaced by s2 but not by s1, apply the
respective variable/term pair xi

ti
of s2.

(iii) Remove any pairs of variable x and term t where x = t.

Example: { z
g(x,y) ,

v
w}{

x
a ,

y
b ,

w
v ,

z
d} ={xa ,

y
b ,

w
v ,

z
g(a,b)}.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 21/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Properties of Substitutions

For any formula ϕ and substitutions s1, s2, s3:

→ (ϕs1)s2 = ϕ(s1s2) by definition (composing functions).

→ (s1s2)s3 = s1(s2s3) by definition (composing functions).

→ s1s2 = s2s1? No (not commutative), e.g. ϕ = Dog(x), s1 = { x
Lassie },

s2 = { x
Garfield }.

(And by the way:) (idempotence)

Proposition. A substitution s = {x1

t1
, . . . , xn

tn
} is idempotent, i.e., ϕss = ϕs for

all ϕ, iff ti does not contain xj for 1 ≤ i, j ≤ n.

Proof. “⇐”: The second application of s does not do anything because al xi
have been removed. “⇒”: if ti contains xj then the second application of s
replaces xj with tj 6= xj .

Example: For s = {xy ,
y

h(a,b)},
P (x, y)s = P (y, h(a, b)) 6= P (x, y)ss = P (h(a, b), h(a, b)).

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 22/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Unification

Definition (Unifier). We say that a substitution s is a unifier for a set
of expressions {E1, . . . , Ek} if Eis = Ejs for all i, j.

Notation: We’ll usually write {Ei} for {E1, . . . , Ek}.

Example: {P (x, f(y, z), b), P (x, f(b, w), b)}

→ s = {yb ,
z
w ,

x
h(a,b)}? Yes. But not “the best” one.

→ s = {yb ,
z
w}? Yes. This is a most general unifier (mgu):

Definition (mgu). We say that g is an mgu of {Ei} if, for any unifier s
of {Ei}, there exists a substitution s′ such that {Ei}s = {Ei}gs′.

→ If any unifier exists, then an idempotent mgu exists.

→ We’ll next introduce an algorithm that finds it.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 23/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Unification Algorithm: What We Can Not Do

Example:

→ Can we unify {P (x, f(y), b), P (x, f(f(y)), b)}? No. Whichever way
we replace y within “f(y)” on the left-hand side, the same change will
appear within “f(f(y))” on the right-hand side. So the two will be
different again. E.g., consider s = { y

f(y)}:
P (x, f(y), b)s = P (x, f(f(y)), b)
6= P (x, f(f(y)), b)s = P (x, f(f(f(y))), b).

→ If the only way to unify {Ei} is to unify a variable x with a term t
that contains x, then {Ei} cannot be unified.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 24/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Unification Algorithm: Disagreement Set

Our unification algorithm (next slide) makes use of this notion:

Terminology: The disagreement set of a set of expressions {Ei} is the
set of sub-expressions {ti} of {Ei} at the first position in {Ei} for which
some of the {Ei} disagree.

Examples:

→ {P (x, c, f(y)), P (x, z, z)}: {c, z}

→ {P (x, a, f(y)), P (y, a, f(y))}: {x, y}

→ {P (v, f(z), g(w)), P (v, f(z), g(f(z)))}? {w, f(z)}

→ {P (v, f(z), g(w)), P (v, f(z), g(f(z))), P (v, f(z), f(x))}?
{g(w), g(f(z)), f(x)}

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 25/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Unification Algorithm

Theorem. The following algorithm succeeds if and only if there exists a
unifier for {Ei}. In the positive case, the algorithm returns an
idempotent mgu of {Ei}. (Proof omitted.)

k ← 0, Tk = {Ei}, sk = {};
while Tk is not a singleton do

Let Dk be the disagreement set of Tk;

/* if tk contains xk then unification is impossible, cf. slide 24 */
Let xk, tk ∈ Dk be a variable and term s.t. tk does not contain xk;
if such xk, tk do not exist then exit with output “failure”;

sk+1 ← sk{xk

tk
}; /* tk does not contain any of x1, . . . , xk */

Tk+1 ← Tk{xk

tk
}; /* xk does not occur in Tk+1 */

k ← k + 1;
endwhile
exit with output sk;

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 26/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Unification Algorithm: An Example

{P (x, f(y), y), P (z, f(b), b)}

D0: {x, z}
s1: {xz }
T1: {P (z, f(y), y), P (z, f(b), b)}

D1: {y, b}
s2: s1{yb} = {xz ,

y
b}

T2: {P (z, f(b), b), P (z, f(b), b)} = {P (z, f(b), b)}

→ T2 is a singleton. Return s2.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 27/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Questionnaire

Question!

Can {Knows(John, x),Knows(x,Elizabeth)} be unified?

(A): Yes (B): No

→ No. We would have to substitute two different constants for x. Algorithm trace:
D0: {John, x}; s1: { x

John
}; T1: {Knows(John, John),Knows(John,Elizabeth)}.

D1: {John,Elizabeth}. D1 does not contain a variable. Stop with “failure”.

Question!

What about {Knows(John, x),Knows(y,Elizabeth)}?
(A): Yes (B): No

→ Yes. Algorithm trace: D0: {John, y}; s1: { y
John
}; T1: {Knows(John, x),

Knows(John,Elizabeth)}; D1: {x,Elizabeth}; s2: s1{ x
Elizabeth

} = { y
John

, x
Elizabeth

};
T2: {Knows(John,Elizabeth)}. T2 is a singleton. Return s2.

→ Note: Here we have standardized the variables apart. (Remember: Last step of
transformation to clausal normal form, Chapter 12.)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 28/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

PL1 Resolution: Setup

We assume: Clausal normal form, variables standardized apart.

universal prefix + disjunction of literals

∀x1∀x2∀x3 . . . ∀xn(l1 ∨ · · · ∨ ln)

→ Written {l1, . . . , ln}.

Example: {{Nat(s(x)),¬Nat(x)}, {Nat(y)}}

Reminder: Terminology and Notation

A literal l is an atom or the negation thereof; the negation of a
literal is denoted l (e.g., ¬Q = Q).
A clause C is a set (=disjunction) of literals.
Our input is a set ∆ of clauses.
The empty clause is denoted �.
A calculus is a set of inference rules.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 30/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

PL1 Resolution: Setup, ctd.

Derivations: We say that a clause C can be derived from ∆ using
calculus R, written ∆ `R C, if (starting from ∆) there is a sequence of
applications of rules from R, ending in C.

→ In contrast to propositional resolution, we will consider here three
different resolution calculi R.

Soundness: A calculus R is sound if ∆ `R C implies ∆ |= C.

Completeness: A calculus R is refutation-complete if ∆ |= ⊥ implies
∆ `R �, i.e., if ∆ is unsatisfiable then we can derive the empty clause.

Together: ∆ is unsatisfiable iff we can derive the empty clause.
Propositional resolution is sound & refutation-complete or
propositional ∆.

Reminder: Deduction ≈ Proof by Contradiction

To decide whether KB |= ϕ, decide satisfiability of ψ := KB∪ {¬ϕ}: ψ is
unsatisfiable iff KB |= ϕ.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 31/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Reminder: Propositional Resolution

Definition (Propositional Resolution). Resolution uses the following
inference rule (with exclusive union ∪̇ meaning that the two sets are
disjoint):

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

If ∆ contains parent clauses of the form C1∪̇{l} and C2∪̇{l}, the rule
allows to add the resolvent clause C1 ∪ C2. l and l are called the
resolution literals.

Example: {P,¬R} resolves with {R,Q} to {P,Q}.

Lemma. The resolvent follows from the parent clauses.

Proof. If I |= C1∪̇{l} and I |= C2∪̇{l}, then I must make at least one
literal in C1 ∪ C2 true.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 32/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Binary PL1 Resolution

Definition (Binary PL1 Resolution). Binary PL1 resolution is the following
inference rule:

C1∪̇{P1}, C2∪̇{¬P2}
[C1 ∪ C2]g

If ∆ contains parent clauses of the form C1∪̇{P1} and C2∪̇{¬P2}, where
{P1, P2} can be unified and g is an mgu thereof, the rule allows to add the
resolvent clause [C1 ∪ C2]g. P1 and ¬P2 are called the resolution literals.

Example: From {Nat(s(x)),¬Nat(x)} and {Nat(1)} we can derive Nat(s(1))
using the mgu g = {x1}.

Lemma (Soundness). The resolvent follows from the parent clauses.

Proof. [1. Substitution instantiates a universal clause to a special case.] If I
satisfies the parent clauses, then due to the universal quantification it must
satisfy the substituted parent clauses; these take the form C1∪̇{l} and C2∪̇{l}.
[2. Same argument as in propositional case.] But then (similar to propositional
case), for every assigment to the remaining (universally quantified) variables, I
must make at least one literal in C1 ∪ C2 true.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 33/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Why Do We Need To Standardize Variables Apart?

Example: ∆ = {{Knows(John, x)}, {¬Knows(x,Elizabeth),King(x)}}
→ We should be able to conclude that? John is a king.

Unification 1: {P1, P2} = {Knows(John, x),Knows(x,Elizabeth)}
→ Is there a unifier for {Ei}? No. We would have to substitute two
different constants for x. (Cf. slide 28)

Unification 2: {P1, P2} = {Knows(John, x),Knows(y,Elizabeth)}
→ Is there a unifier for {Ei}? Yes: { x

Elizabeth ,
y

John }. (Cf. slide 28)

→ Standardizing the variables in clauses apart is sometimes necessary to
allow unification.

(→ An alternative would be to not use unification, and instead substitute atoms

separately to the same outcome; we don’t consider this here.)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 34/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Questionnaire

Question!

Which are PL1 resolvents of
{¬Chases(x,Garfield),Chases(Lassie, x)} and {Chases(Bello, y)}?
(A): {Chases(Lassie,Bello)}
(C): �

(B): {Chases(Garfield ,Bello)}
(D): {Chases(Bello,Garfield)}

→ (A): Yes, we can obtain this resolvent with g = { x
Bello ,

y
Garfield }.

→ (B): No. The only potential resolution literal in the first clause is
¬Chases(x,Garfield); the remaining literal Chases(Lassie, x) can’t be
instantiated to Chases(Garfield ,Bello).

→ (C): No.

→ (D): No, same as (B). (Note though that (D) is a factor of the second
clause, see slide 39.)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 35/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Binary PL1 Resolution: Examples

Clauses: {P (x), Q(f(x))}, {R(g(x)),¬Q(f(a))}

→ Standardizing variables apart: {P (x), Q(f(x))}, {R(g(y)),¬Q(f(a))}

→ MGU: s = {xa}

→ Resolvent: {P (a), R(g(y))}.

Clauses: {P (x, g(c)), Q(x, a)}, {¬P (y, g(c)),¬R(b, z)}

→ Standardizing variables apart: (Nothing to do.)

→ MGU: s = {xy}

→ Resolvent: {Q(y, a),¬R(b, z)}.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 36/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Where Binary PL1 Resolution Fails

Example: ∆ = {{P (x1, x2), P (x2, x1)}, {¬P (y1, y2),¬P (y2, y1)}}
→ Is ∆ satisfiable? No. Remember that the variables in PL1 clauses are
universally quantified. To satisfy ∆, we would (in particular) have to
have P (o, o) and ¬P (o, o) for all objects o in the universe.

→ Can we derive � with binary PL1 resolution? No. E.g., with { y1x1
, y2x2
},

we get the resolvent {P (x2, x1),¬P (x2, x1)}. Every derivable clause has
the form {l(V1, V2), l(V2, V1)} where l ∈ {P,¬P}, V1 ∈ {x1, y1}, and
V2 ∈ {x2, y2}. In particular, the empty clause is not derivable.

Notation: Define RBinary := {binary PL1 resolution}.
Theorem. The calculus RBinary is not refutation-complete.

Proof. See example above.

However, RBinary is sound:

Theorem. The calculus RBinary is sound. (Proof: Lemma slide 33)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 37/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Solution 1: Full PL1 Resolution

→ Allow to unify several resolution literals:

Definition (Full PL1 Resolution). Full PL1 resolution is the following
inference rule:

C1∪̇{P 1
1 , . . . , P

n
1 }, C2∪̇{¬P 1

2 , . . . ,¬Pm
2 }

[C1 ∪ C2]g

where {P 1
1 , . . . , P

n
1 , P

1
2 , . . . , P

m
2 } can be unified and g is an mgu thereof.

Example: ∆ = {{P (x1, x2), P (x2, x1)}, {¬P (y1, y2),¬P (y2, y1)}}
→ Can we derive � with full PL1 resolution? Yes, using for example the
unifier g = {x2

x1
, y1x1

, y2x1
}.

Notation: Define RFull := {full PL1 resolution}.
Theorem. The calculus RFull is sound.

Proof. It suffices to show that, for each application of the rule, the
resolvent follows from the parents. That can be shown with the same
argument as for binary PL1 resolution (Lemma slide 33).
Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 38/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Solution 2: Binary PL1 Resolution + Factoring

→ Allow to unify literals within a clause:

Definition (Factoring). Factoring is the following inference rule:

C1∪̇{l1}∪̇{l2}
[C1 ∪ {l1}]g

where {l1, l2} can be unified and g is an mgu thereof. [C1 ∪ {l1}]g is
called a factor of the parent clause C1∪̇{l1}∪̇{l2}.

Example: ∆ = {{P (x1, x2), P (x2, x1)}, {¬P (y1, y2),¬P (y2, y1)}}
→ How can we apply factoring? {x2

x1
} on {P (x1, x2), P (x2, x1)} gives

{P (x1, x1)}, {y2y1 } on {¬P (y1, y2),¬P (y2, y1)} gives {¬P (y1, y1)}.
Then we can derive � with binary PL1 resolution, using g = { y1x1

}.

Notation: Define RFactBin := {binary PL1 resolution,factoring}.
Theorem. The calculus RFactBin is sound.

Proof. Due to the universal quantification, the factor follows from its
parent. Done with Lemma slide 33.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 39/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

What About Completeness? The Lifting Lemma

Lemma (Lifting Lemma). Let C1 and C2 be two clauses with no shared
variables, and let Cg

1 and Cg
2 be ground instances of C1 and C2. Say that Cg is

a resolvent of Cg
1 and Cg

2 . Then there exists a clause C such that Cg is a
ground instance of C, and:

(i) C can be derived from C1 and C2 using RFull .
(ii) C can be derived from C1 and C2 using RFactBin .

Proof Sketch.
The resolution literals (WLOG) P ∈ Cg

1 and ¬P ∈ Cg
2 must be obtainable by

grounding {P 1
1 , . . . , P

n
1 } ⊆ C1 respectively {¬P 1

2 , . . . ,¬Pm
2 } ⊆ C2. So

{P 1
1 , . . . , P

n
1 , P

1
2 , . . . , P

m
2 } must be unifiable, and we can apply full PL1

resolution, showing (i). From this, (ii) follows because an application of full PL1
resolution can be simulated using several applications of factoring followed by an
application of binary PL1 resolution.

Example: C1 = {P (x1), P (x2), R(z)}, C2 = {¬P (y1),¬P (y2), R(z′)}}
E.g., Cg

1 = {P (o), R(o)} and Cg
2 = {¬P (o), R(o)}. Then Cg = {R(o)};

{P 1
1 , . . . , P

n
1 } = {P (x1), P (x2)}, {¬P 1

2 , . . . ,¬Pm
2 } = {¬P (y1),¬P (y2)}; C =

{R(z), R(z′)} results from full PL1 resolution with g = {x2

x1
, y1

x1
, y2

x1
}.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 40/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

What About Completeness? Proof

Theorem. The calculi RFull and RFactBin are refutation-complete.

Proof:

Any set θ of PL1 formulas is representable in clausal form ∆.
↓

Assume ∆ is unsatisfiable.
↓ ←−−− Herbrand, prop. compactness

Some finite set ∆′ of ground instances is unsatisfiable.
↓ ←−−− Prop. resolution completeness

Propositional resolution can derive � from ∆′.
↓←−−− Lifting Lemma

Each of RFull and RFactBin can derive � from ∆.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 41/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Questionnaire

Question!

Is full PL1 resolution guaranteed to terminate after a finite
number of rule applications?

(A): Yes. (B): No.

→ No. If PL1 resolution were guaranteed to terminate, then it would be a
decision procedure for unsatisfiability of PL1 formulas. That problem, however,
is only semi-decidable, cf. slide 13.

→ For illustration, consider these three clauses: (1) {¬P (x), Q(f(x))}, (2)
{¬Q(y), R(f(y))}, (3) {¬R(z), Q(f(z))}. There is an infinite sequence of
applications of PL1 resolution: (1) and (2) give (4) {¬P (x), R(ff(x))}; (3)
and (4) give {¬P (x), Q(fff(x))}; (2) and (5) give {¬P (x), R(ffff(x))} . . .

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 42/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

When PL1 Resolution Reasons About Blocks . . .

Example: KB = {∀x[Block(x)→ Red(x)],Block(A)}

A D B E C

Want: Deduce that A is red, i.e., KB |= ϕ for ϕ := Red(A).

Deduction: θ := KB ∪ {¬ϕ} is unsatisfiable iff KB |= ϕ.

Skolem normal form θ∗: {∀x[¬Block(x) ∨ Red(x)], Block(A),
¬Red(A)}
Clausal normal form ∆: {{¬Block(x),Red(x)}, {Block(A)},
{¬Red(A)}}

PL1 resolution proof:

→ Resolve 1st with 2nd clause using g = { xA}, yielding {Red(A)}.
→ Resolve that clause with 3rd clause using g = { xA}, yielding �.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 44/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Example “Integers”

Formula: ∀x[∃y(Equals(x, succ(y)))] (“For every integer x, there is y so that
x = y + 1”)

→ Is this satisfiable? Yes: E.g., by setting “Equals” to be all pairs of objects.

Axiomatizing succ,Equals:

“1 is not the successor of anybody:” ∀x¬Equals(1, succ(x))

Resolution refutation:

∀x[∃y(Equals(x, succ(y)))] 7→ {Equals(x, succ(f(x)))}
∀x¬Equals(1, succ(x)) 7→ {¬Equals(1, succ(x))} 7→ {¬Equals(1, succ(y))}
MGU: g = {x1 ,

y
f(1)}. (Note: We needed to standardize variables apart.)

[Equals(x, succ(f(x)))]g = Equals(1, succ(f(1)))

[¬Equals(1, succ(y))]g = ¬Equals(1, succ(f(1)))

→ Note the difference to slide 15: Here, no guessing of “the right subset of
Herbrand ground terms” was needed.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 45/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Col. West, a Criminal?

From [Russell and Norvig (2010)]:

The law says it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has
some missiles, and all of its missiles were sold to it by Colonel
West, who is American.

→ Prove that Col. West is a criminal.

Convention: In what follows, for better readability we will sometimes
write implications P ∧Q∧R→ S instead of clauses ¬P ∨¬Q∨¬R∨ S.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 46/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Col. West, a Criminal? Clauses

It is a crime for an American to sell weapons to hostile nations:
Clause:
American(x1) ∧Weapon(y1) ∧ Sells(x1, y1, z1) ∧Hostile(z1)→ Criminal(x1)

Nono has some missiles:
∃x[Owns(Nono, x) ∧Missile(x)]
SNF & Clauses: Owns(Nono,M); Missile(M)

All of Nono’s missiles were sold to it by Colonel West.
Clause: Missiles(x2) ∧Owns(Nono, x2)→ Sells(West , x2,Nono)

Missiles are weapons:
Clause: Missile(x3)→Weapon(x3)

An enemy of America counts as “hostile”:
Clause: Enemy(x4,America)→ Hostile(x4)

West is an American:
American(West)

The country Nono is an enemy of America:
Enemy(Nono,America)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 47/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Col. West, a Criminal! PL1 Resolution Proof

{¬American(x1),¬Weapon(y1),

¬Sells(x1, y1, z1),¬Hostile(z1),Criminal(x1)}
{¬Criminal(West)}

{American(West)}
{¬American(West),¬Weapon(y1),

¬Sells(West , y1, z1),¬Hostile(z1)}

{¬Missile(x3),Weapon(x3)} {¬Weapon(y1),¬Sells(West , y1, z1),¬Hostile(z1)}

{Missile(M)} {¬Missile(y1),¬Sells(West , y1, z1),¬Hostile(z1)}

{¬Missiles(x2),

¬Owns(Nono, x2),Sells(West , x2,Nono)}
{¬Sells(West ,M, z1),¬Hostile(z1)}

{Missile(M)} {¬Missile(M),¬Owns(Nono,M),¬Hostile(Nono)}

{Owns(Nono,M)} {¬Owns(Nono,M),¬Hostile(Nono)}

{¬Enemy(x4,America),Hostile(x4)} {¬Hostile(Nono)}

{Enemy(Nono,America)} {¬Enemy(Nono,America)}

�

{ x1
West }

{x3
y1
}

{ y1M }

{x2
M , z1

Nono }

{ x4
Nono }

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 48/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Curiosity Killed the Cat?

From [Russell and Norvig (2010)]:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by noone.
Jack loves all animals.
Cats are animals.
Either Jack or curiosity killed the cat (whose name is “Garfield”).

→ Prove that curiosity killed the cat.

Convention: In what follows, for better readability we will sometimes
write implications P ∧Q∧R→ S instead of clauses ¬P ∨¬Q∨¬R∨ S.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 49/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Curiosity Killed the Cat? Clauses

Everyone who loves all animals is loved by someone:
∀x[∀y(Animal(y)→ Loves(x, y))→ ∃zLoves(z, x)]

SNF & Clauses: Animal(f(x1)) ∨ Loves(g(x1), x1); and
¬Loves(x2, f(x2)) ∨ Loves(g(x2), x2)

Anyone who kills an animal is loved by noone:
∀x[∃y(Animal(y) ∧Kills(x, y))→ ∀z¬Loves(z, x)]
Clause: ¬Animal(y3) ∨ ¬Kills(x3, y3) ∨ ¬Loves(z3, x3)

Jack loves all animals:
Clause: Animal(x4)→ Loves(Jack , x4)

Cats are animals:
Clause: Cat(x5)→ Animal(x5)

Either Jack or curiosity killed the cat (whose name is “Garfield”):
Clauses: Kills(Jack ,Garfield) ∨Kills(Curiosity ,Garfield); and Cat(Garfield)

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 50/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Curiosity Killed the Cat! PL1 Resolution Proof

{Cat(Garfield)} {¬Cat(x5),Animal(x5)}

{Animal(Garfield)} {¬Animal(y3),¬Kills(x3, y3),¬Loves(z3, x3)}

{¬Kills(x3,Garfield),¬Loves(z3, x3)} {Kills(Jack ,Garfield),Kills(Curiosity ,Garfield)} {¬Kills(Curiosity ,Garfield)}

{Kills(Jack ,Garfield)}

{¬Loves(z3, Jack)} {¬Loves(x2, f(x2)),Loves(g(x2), x2)} {¬Animal(x4),Loves(Jack , x4)}

{Loves(g(Jack), Jack),¬Animal(f(Jack))} {Animal(f(x1)),Loves(g(x1), x1)}

{Loves(g(Jack), Jack)}

�

{ x5
Garfield }

{ y3
Garfield }

{ x3
Jack }

{ x2
Jack ,

x4
f(Jack)}

{ x1
Jack }

{ z3
g(Jack)}

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 51/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Summary

The Herbrand universe is the set of all ground terms that can be built from
the symbols used in a set θ of PL1 formulas. The (propositional-logic)
Herbrand expansion instantiates the formulas with these terms, and is
satisfiable iff θ is.

For unsatisfiable θ, we can always find an unsatisfiable finite subset of the
Herbrand expansion.

PL1 resolution reasons directly about PL1 formulas (in clausal normal
form) It relies on unification to compare PL1 terms.

Binary PL1 resolution is like propositional resolution with unification. It is
not refutation-complete.

To obtain a complete PL1 resolution calculus, we can either allow to unify
sets of resolution literals (full PL1 resolution), or to unify literals within
clauses (factoring).

The set of satisfiable PL1 formulas is not recursively enumerable. Thus,
neither the reduction to propositional logic, nor PL1 resolution, guarantee
to terminate in finite time.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 53/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Topics We Didn’t Cover Here

PL1 is very expressive, but: (some people just can’t get enough)

Second-Order Logic: Quantification over predicates.

∀x, y[Equals(x, y)↔ [∀p(p(x)↔ p(y))]]

“We define x and y to be “Equal” iff their behavior with respect to
all predicates is identical.”

Temporal Logic: Quantification over future behaviors.

AG[ϕ =⇒ EFψ]

“For All futures, we Globally have that, if s |= ϕ, then there Exists
a future from s on which Finally we have ψ.”

And what else? There’s of course also lots of algorithmic stuff within
PL1 that we didn’t cover.

→ If you want to know all about this, take the “Automated Reasoning”
courses.
Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 54/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

Reading

Chapter 9: Inference in First-Order Logic, Section 9.1, 9.2, and 9.5 [Russell
and Norvig (2010)].

Content: What I cover in “Reduction to Propositional Reasoning” is
distributed in RN over Section 9.1, which gives a very brief sketch of the
idea, and Section 9.5.4 which contains a summary of Herbrand’s results.

Section 9.2.2 contains a much less formal/detailed account of what I cover
in “Substitutions, and Unification”.

Section 9.5.2 briefly outlines (in half a page!) what I cover in “Predicate
Logic Resolution”. Section 9.5.3 pretty much coincides with my “On
Criminals and Cats”.

Sections 9.3 and 9.4 describe “forward chaining” and “backward chaining”,
relevant to Databases and Logic Programming. Nice background reading!
The same applies to a few gems here and there, such as a summary of
Gödel’s incompleteness theorem.

→ Overall: As usual, lacks rigor, but covers a great breadth of subjects
and provides nice complementary reading. Can’t replace the lecture.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 55/56

Introduction Propositional Substitution & Unification PL1 Resolution Examples Conclusion References

References I

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Koehler and Torralba Artificial Intelligence Chapter 08: Predicate Logic Reasoning, Part II 56/56

	Introduction
	

	Reduction to Propositional Reasoning
	

	Substitutions, and Unification
	

	PL1 Resolution
	

	On Criminals and Cats: PL1 Resolution Examples
	

	Conclusion
	

	
	References

