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Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Prof. Hoffmann for slide sources

Koehler and Torralba Artificial Intelligence Chapter 09: Constraint Satisfaction Problems, Part I 1/48



Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Agenda

1 Introduction

2 Constraint Networks

3 Assignments, Consistency, Solutions
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A (Constraint Satisfaction) Problem
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Constraint Satisfaction Problems

What is a constraint?

A constraint is a condition that every solution must satisfy.

What is a constraint satisfaction problem?

Given:

A set of variables, each associated with its domain.

A set of constraints over these variables.

Find:

An assignment of variables to values (from the respective domains),
so that every constraint is satisfied.
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A Constraint Satisfaction Problem

→ Problem: SuDoKu.

Variables: Content of each cell.

Domains: Numbers 1, . . . , 9.

Constraints:
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Another Constraint Satisfaction Problem

→ (Our Main Illustrative) Problem: Coloring Australia.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: WA, NT, SA, Q, NSW, V, T.

Domains: red, green, blue.

Constraints: Adjacent states must have different colors.
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Another Constraint Satisfaction Problem

→ Problem: Graph Coloring. NP-hard for k = 3.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: Vertices in a graph.

Domains: k different colors.

Constraints: Adjacent vertices must have different colors.

Koehler and Torralba Artificial Intelligence Chapter 09: Constraint Satisfaction Problems, Part I 7/48



Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Bundesliga Constraints

Variables: vAvs.B where A and B are teams, with domain {1, . . . , 34}:
For each match, the (ID of the) “Spieltag” where it is scheduled.

(Some) Constraints:

For all A,B: vAvs.B ≤ 17 < vBvs.A or
vBvs.A ≤ 17 < vAvs.B (each pairing exactly
once in each half-season).
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How to Solve the Bundesliga Constraints?

Jörg’s personal pre-study attempts:

How do they actually do it? Modern computers and CSP methods: fractions
of a second. 19th (20th/21st?) century: Combinatorics and manual work.

Koehler and Torralba Artificial Intelligence Chapter 09: Constraint Satisfaction Problems, Part I 9/48



Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Some Applications

Traveling Tournament Problem Scheduling

Timetabling Radio Frequency Assignment
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Our Agenda for This Topic

→ Our treatment of the topic “Constraint Satisfaction Problems”
consists of Chapters 8 and 9.

This Chapter: Basic definitions and concepts; näıve backtracking
search.

→ Sets up the framework. Backtracking underlies many successful
algorithms for solving constraint satisfaction problems (and,
naturally, we start with the simplest version thereof).

Chapter 9: Inference and decomposition methods.

→ Inference reduces the search space of backtracking.
Decomposition methods break the probem into smaller pieces. Both
are crucial for efficiency in practice.
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Our Agenda for This Chapter

Constraint Networks and Assignments, Consistency, Solutions: How
are constraint satisfaction problems defined? What is a solution?

→ Get ourselves on firm ground.

Näıve Backtracking: How does backtracking work? What are its main
weaknesses?

→ Serves to understand the basic workings of this wide-spread algorithm,
and to motivate its enhancements.

Variable- and Value Ordering: How should we give direction to a
backtracking search?

→ Simple methods for making backtracking aware of the structure of the
problem, and thereby reduce search.
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Constraint Networks: Informal

Constraint Networks: Informal Definition

A constraint network is defined by:

A finite set of variables.

A finite domain for each variable.

A set of constraints (here: binary relations).

→ We’re looking for a solution to the network, i.e., an assignment of
variables to values (from the respective domains), so that every
constraint is satisfied.

Terminology:

It is common to say constraint satisfaction problem (CSP) instead of
constraint network.

Strictly speaking, however, “CSP” is the algorithmic problem of
finding solutions to constraint networks.
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Constraint Networks: Formal

Definition (Constraint Network). A (binary) constraint network is a triple
γ = (V,D,C) where:

V = {v1, . . . , vn} is a finite set of variables.

D = {Dv1 , . . . , Dvn} is a corresponding set of finite domains.

C = {C{u,v}} is a set of binary relations (constraints), where for each
C{u,v} we have u, v ∈ V , u 6= v, and C{u,v} ⊆ Du ×Dv.

We require that C{u,v}, C{x,y} ∈ C =⇒ {u, v} 6= {x, y}. We will write
Cuv instead of C{u,v} for brevity.

Notes:

Cuv = permissible combined assignments to u and v.

Relations are the maximally general formalization of constraints. In
illustrations, we often use abbreviations, e.g. “u 6= v” etc.

There is no point in having two constraints Cuv and C ′
uv constrain the

same variables u and v, because

Cuv is identified by its set {u, v} of variables; the order we choose for the
relation is arbitrary.
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Example: Coloring Australia

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: V = {WA,NT ,SA,Q ,NSW ,V ,T}.
Domains:

→ If all variables have the same domain, abusing notation we will
write D to denote that “global” domain.

Constraints:
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Constraint Networks: Variants

Extensions:

Infinite domains. (E.g., Dv = R in Linear Programming.)

Constraints of higher arity, i.e., relations over k > 2 variables. (E.g.,
propositional CNF satisfiability → Chapters 10 and 11.)

Unary Constraints:

A unary constraint is a relation Cv over a single variable, i.e., a
subset Cv ⊆ Dv of that variable’s domain.

A unary constraint Cv is equivalent to
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Example: SuDoKu

Variables: V = {vij | 1 ≤ i, j ≤ 9}: vij =cell row i column j.

Domains: For all v ∈ V : Dv = D = {1, . . . , 9}.
Unary Constraints:

Binary Constraints: Cvijvi′j′ =”vij 6= vi′j′”, i.e.,
Cvijvi′j′ = {(d, d

′) ∈ D ×D | d 6= d′}, for:
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Questionnaire

→ Problem: Place 8 queens so that they don’t attack each other.

Question!

How to encode this into a constraint network? Variables?
Domains? Constraints?
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CSP and General Problem Solving

(some new constraint-reasoning problem)

describe problem as a constraint network 7→ use off-the-shelf CSP solver

(its solution)

Constraint networks=generic language to describe this kind of
problem.

CSP solvers=generic algorithms solving such problems.

The next time you play SuDoKu, just write the game down in CSP
format and use an off-the-shelf solver.

On the first practical exercise sheet, this is the kind of thing you will
be doing . . .

Koehler and Torralba Artificial Intelligence Chapter 09: Constraint Satisfaction Problems, Part I 20/48



Introduction Networks Consistency Backtracking V/V Ordering Conclusion References

Assignments and Consistency

Definition (Assignment). Let γ = (V,D,C) be a constraint network.
A partial assignment is a function a : V ′ 7→

⋃
v∈V Dv where V ′ ⊆ V and

a(v) ∈ Dv for all v ∈ V ′. If V ′ = V , then a is a total assignment, or
assignment in short.

→ A partial assignment assigns some variables to values from their
respective domains. A total assignment is defined on all variables.

Definition (Consistency). Let γ = (V,D,C) be a constraint network,
and let a be a partial assignment. We say that a is inconsistent if there
exist variables u, v ∈ V on which a is defined, with Cuv ∈ C and
(a(u), a(v)) 6∈ Cuv. In that case, a violates the constraint Cuv. We say
that a is consistent if it is not inconsistent.

→ Partial assignment inconsistent = “already violates a constraint”.
(Trivially consistent: The empty assignment.)
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Example: Coloring Australia

Is this partial assignment
consistent?

Is this partial assignment
consistent?
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Solutions

Definition (Solution). Let γ = (V,D,C) be a constraint network. If a
is a total consistent assignment, then a is a solution for γ. If a solution
to γ exists, then γ is solvable; otherwise, γ is inconsistent.

Example “Coloring Australia”:

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: V = {WA,NT ,SA,Q ,NSW ,V ,T}.
Domains: All v ∈ V : Dv = D = {red , green, blue}.
Constraints:

Solution: {WA = red ,NT = green,SA = blue,
Q = red ,NSW = green,V = red ,T = green}.

→ Note: This is not the only solution. E.g., we can permute the colors, and
Tasmania can be assigned an arbitrary color.
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Consistency vs. Extensibility

Definition. Let γ = (V,D,C) be a constraint network, and let a be a
partial assignment. We say that a can be extended to a solution if there
exists a solution a′ that agrees with a on the variables where a is defined.
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Questionnaire

Question!

Which of the following statements imply that the empty
assignment, a0, can always be extended to a solution?

(A): a0 is consistent.

(C): There are no binary
constraints.

(B): The network is inconsistent.

(D): The network is solvable.
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Computational Complexity of CSP

Input size vs. solution space size: Assume constraint network γ with n
variables, all with domain size k.

Number of total assignments: kn.

Size of description of γ: nk for variables and domains; at most n2

constraints, each of size at most k2 =⇒ O(n2k2).

→ The number of assignments is exponentially bigger than the size of γ.

It is therefore no surprise that:

Theorem (CSP is NP-complete). It is NP-complete to decide whether
or not a given constraint network γ is solvable.

Proof. Membership in NP: Just guess a total assignment a and verify
(in polynomial time) whether a is a solution.

NP-Hardness: The special case of graph coloring (our illustrative
example) is known to be NP-hard.
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Questionnaire

Can this partial assignment be
extended to a solution?

Can this partial assignment be
extended to a solution?
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Before We Begin

Basic Concepts

Search: Depth-first enumeration of partial assignments.

Backtracking: Backtrack at inconsistent partial assignments.

Inference: Deducing tighter equivalent constraints to reduce search
space (backtracking will occur earlier on).

Up next: Näıve backtracking, no inference.

Next Chapter: Backtracking with inference.
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Näıve Backtracking

Call with input constraint network γ and the empty assignment a:

function NäıveBacktracking(a) returns a solution, or “inconsistent”
if a is inconsistent then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d ∈ Dv in some order do
a′ := a ∪ {v = d}
a′′ := NäıveBacktracking(a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

→ Backtracking=Recursively instantiate variables one-by-one, backing up out of
a search branch if the current partial assignment is already inconsistent.

→ Why is this better than enumerating, and solution-checking, all total
assignments (cf. slide 9)?
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Example: Coloring Australia
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Näıve Backtracking, Pro and Contra

Pro:

Näıve backtracking is extremely simple. (You can implement it on a
Commodore 128.)

Despite this simplicity, it is much more efficient than enumerating
total assignments. (You can implement it on a Commodore 128,
and solve the Bundesliga.)

Näıve backtracking is complete (if there is a solution, backtracking
will find it).

Contra:

Backtracking does not recognize a that cannot be extended to a
solution, unless a is already inconsistent.
→ Employ inference to improve this! (Chapter 9).
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Näıve backtracking, Pro and Contra: Illustration

Much more efficient than enumerating total as-
signments:

Does not recognize a that cannot be extended
to a solution, unless a is already inconsistent:

→ ”Human SuDoKu playing” = lots of inference!
(You want to minimize the number of failed attempts
to keep track of on paper . . . )
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Questionnaire

Question!

Say G is a clique of n vertices, and we run backtracking for graph
coloring with n different colors. How big is the search space
(consistent partial assignments) of näıve backtracking?

(A): n

(C): 1 +
∑n−1

i=0 n ∗ · · · ∗ (n− i)
(B): n!

(D): nn

Question!

If G is a line and we order variables left-to-right?

(A): 1 +
∑n−1

i=0 n ∗ · · · ∗ (n− i) (B): 1 +
∑n−1

i=0 n ∗ (n− 1)i
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Questionnaire, ctd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Question!

Variable order WA,NT ,Q ,NSW ,V ,T ,SA. Tightest upper bound
on näıve backtracking search space size?

(A): 145

(C): 433

(B): 382

(D): 37
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What to Order, Where, in Näıve Backtracking

function NäıveBacktracking(γ, a) returns a solution, or “inconsistent”
if a is inconsistent with γ then return “inconsistent”
if a is a total assignment then return a
select some variable v for which a is not defined
for each d ∈ Dv in some order do
a′ := a ∪ {v = d}
a′′ := NäıveBacktracking(γ, a′)
if a′′ 6= “inconsistent” then return a′′

return “inconsistent”

→ The order in which we consider variables and their values may have a
huge impact on search space size!
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Example: Coloring Australia

WA,NT ,Q as on slide 32 =⇒ 3 ∗ 2 ∗ 2.

Any ideas for better variable orders?
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Variable- and Value Ordering

Variable Ordering:

Näıve backtracking does not specify in which order the variables are
considered.

That ordering often dramatically influences search space size. (Cf.
previous slide, and slide 36 vs. slide 44.)

Value Ordering:

Näıve backtracking does not specify in which order the values of the
chosen variable are considered.

If no solution exists below current node: Doesn’t matter, we will
have to search the whole sub-tree anyway.

If solution does exist below current node: Does matter. If we always
chose a “correct” value (from a solution) then no backtracking is
needed.
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Variable Ordering Strategy, Part I

A commonly used strategy: most constrained variable first. Always
pick a variable v with minimal |{d ∈ Dv | a ∪ {v = d} is consistent}|.

→ By choosing a most constrained variable v first, we reduce the
branching factor (number of sub-trees generated for v) and thus reduce
the size of our search tree.

→ Extreme case: If |{d ∈ Dv | a ∪ {v = d} is consistent}| = 1, then the
value assignment to v is forced by our previous choices.
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Variable Ordering Strategy, Part II

Another commonly used strategy: most constraining variable first.
Always pick v with maximal |{u ∈ V | a(u) is undefined, Cuv ∈ C}|.

→ By choosing a most constraining variable first, we detect
inconsistencies earlier on and thus reduce the size of our search tree.

Commonly used strategy combination: From the set of most
constrained variables, pick a most constraining variable.
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Value Ordering Strategy

A commonly used strategy: least constraining value first. For variable
v, always pick d ∈ Dv with
minimal |{d′ | d′ ∈ Du, a(u) is undefined, Cuv ∈ C, (d′, d) 6∈ Cuv}|.

Allows 1 value for SA

Allows 0 values for SA

→ By choosing a least constraining value first, we increase the chances
to not rule out the solutions below the current node.

→ Compare slide 40: We want to choose a “correct” value.
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Questionnaire

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Question!

Variable order SA,NT ,Q ,NSW ,V ,WA,T . Tightest upper bound
on näıve backtracking search space size?

(A): 52

(C): 382

(B): 145

(D): 433
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Summary

Constraint networks γ consist of variables, associated with finite domains,
and constraints which are binary relations specifying permissible value
pairs.

A partial assignment a maps some variables to values, a total assignment
does so for all variables. a is consistent if it complies with all constraints.
A consistent total assignment is a solution.

The constraint satisfaction problem (CSP) consists in finding a solution for
a constraint network. This has numerous applications including, e.g.,
scheduling and timetabling.

Backtracking instantiates variables one-by-one, pruning inconsistent partial
assignments.

Variable orderings in backtracking can dramatically reduce the size of the
search tree. Value orderings have this potential (only) in solvable sub-trees.

→ Next Chapter: Inference and decomposition, for improved efficiency.
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Reading

Chapter 6: Constraint Satisfaction Problems, Sections 6.1 and 6.3 [Russell
and Norvig (2010)].

Content: Compared to our treatment of the topic “Constraint Satisfaction
Problems” (Chapters 8 and 9), RN covers much more material, but less
formally and in much less detail (in particular, my slides contain many
additional in-depth examples). Nice background/additional reading, can’t
replace the lecture.

Section 6.1: Similar to my “Introduction” and “Constraint Networks”,
less/different examples, much less detail, more discussion of
extensions/variations.

Section 6.3: Similar to my “Näıve Backtracking” and “Variable- and Value
Ordering”, with less examples and details; contains part of what I cover in
Chapter 8 (RN does inference first, then backtracking). Additional
discussion of backjumping.
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