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(Not) Playing Stupid

→ Problem: Find a route to Moscow.

“Look at all locations 10km distant from SB, look at all locations
20km distant from SB, . . . ” = Breadth-first search.

“Just keep choosing arbitrary roads, following through until you hit
an ocean, then back up . . . ” = Depth-first search.

“Focus on roads that go the right direction.” = Informed search!
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Informed Search: Basic Idea

Recall: Search strategy=how to choose the next node to expand?

Blind Search: Rigid procedure using the same expansion order no
matter which problem it is applied to.

→ Blind search has 0 knowledge of the problem it is solving.

→ It can’t “focus on roads that go the right direction”, because it
has no idea what “the right direction” is.

Informed Search: Knowledge of the “goodness” of expanding a state
s is given in the form of a heuristic function h(s), which estimates
the cost of an optimal (cheapest) path from s to the goal.

→ ”h(s) larger than where I came from =⇒ seems s is not the
right direction.”

→ Informed search is a way of giving the computer knowledge about the
problem it is solving, thereby stopping it from doing stupid things.

Koehler and Torralba Artificial Intelligence Chapter 4: Classical Search, Part II 5/61



Introduction Heuristic Functions Syst.: Algorithms Syst.: Performance Local Search Conclusion References

Informed Search: Basic Idea, ctd.
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→ Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small h(s).
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Some Applications

GPS Robotics

Video Games Network Security

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker
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Reminder: Our Agenda for This Topic

→ Our treatment of the topic “Classical Search” consists of Chapters 4
and 5.

Chapter 4: Basic definitions and concepts; blind search.

→ Sets up the framework. Blind search is ideal to get our feet wet.
It is not wide-spread in practice, but it is among the state of the art
in certain applications (e.g., software model checking).

This Chapter: Heuristic functions and informed search.

→ Classical search algorithms exploiting the problem-specific
knowledge encoded in a heuristic function. Typically much more
efficient in practice.
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Our Agenda for This Chapter

Heuristic Functions: How are heuristic functions h defined? What are
relevant properties of such functions? How can we obtain them in practice?

→ Which “problem knowledge” do we wish to give the computer?

Systematic Search: Algorithms: How to use a heuristic function h while
still guaranteeing completeness/optimality of the search.

→ How to exploit the knowledge in a systematic way?

Systematic Search: Performance: Empirical and theoretical
observations.

→ What can we say about the performance of heuristic search? Is it
actually better than blind search?

Local Search: Overview of methods foresaking completeness/optimality,
taking decisions based only on the local surroundings.

→ How to exploit the knowledge in a greedy way?
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Heuristic Functions

Definition (Heuristic Function, h∗). Let Π be a problem with states
S. A heuristic function, short heuristic, for Π is a function
h : S 7→ R+

0 ∪ {∞} so that, for every goal state s, we have h(s) = 0.

The perfect heuristic h∗ is the function assigning every s ∈ S the cost of
a cheapest path from s to a goal state, or ∞ if no such path exists.

Notes:

We also refer to h∗(s) as the goal distance of s.

h(s) = 0 on goal states: If your estimator returns “I think it’s still a
long way” on a goal state, then its “intelligence” is, um . . .

Return value ∞: To indicate dead ends, from which the goal can’t
be reached anymore.

The value of h depends only on the state s, not on the search node
(i.e., the path we took to reach s). I’ll sometimes abuse notation
writing “h(n)” instead of “h(n.State)”.
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Why “Heuristic”?

What’s the meaning of “heuristic”?

Heuristik: Ancient Greek ευρισκειν (= “I find”); aka: ευρηκα!

Popularized in modern science by George Polya: “How to Solve It”
(published 1945).

Same word often used for: “rule of thumb”, “imprecise solution
method”.

In classical search (and many other problems studied in AI), it’s the
mathematical term just explained.
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Heuristic Functions: The Eternal Trade-Off

Distance “estimate”? (h is an arbitrary function in principle!)

We want h to be accurate (aka: informative), i.e., “close to” the
actual goal distance.

We also want it to be fast, i.e., a small overhead for computing h.

These two wishes are in contradiction!

→ Extreme cases? h = 0: no overhead at all, completely
un-informative. h = h∗: perfectly accurate, overhead=solving the
problem in the first place.

→ We need to trade off the accuracy of h against the overhead for
computing h(s) on every search state s.

So, how to? → Given a problem Π, a heuristic function h for Π can be
obtained as goal distance within a simplified (relaxed) problem Π′.
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Heuristic Functions from Relaxed Problems: Example 1

Problem Π: Find a route from Saarbruecken To Edinburgh.
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Heuristic Functions from Relaxed Problems: Example 1

Relaxed Problem Π′: Throw away the map.
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Heuristic Functions from Relaxed Problems: Example 1

Heuristic function h: Straight line distance.
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Heuristic Functions from Relaxed Problems: Example 2

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Problem Π: Move tiles to transform left state into right state.
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Heuristic Functions from Relaxed Problems: Example 2

2 6

5 7

3 4 1

1 2 3 4

5 6 7

Relaxed Problem Π′: Don’t distinguish tiles 8–15.
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Heuristic Functions from Relaxed Problems: Example 2

2 6

5 7

3 4 1

1 2 3 4

5 6 7

Heuristic function h: Length of solution to reduced puzzle.
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Heuristic Functions from Relaxed Problems: Example 3

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Problem Π: Move tiles to transform left state into right state.

Relaxed Problem Π′: Allow to move each tile to any neighbor cell,
regardless of the situation.

Heuristic function h: Manhattan distance. Here: 36.
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Heuristic Functions from Relaxed Problems: Example 4

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Problem Π: Move tiles to transform left state into right state.

Relaxed Problem Π′: Allow to move each tile to any cell in a single
move, regardless of the situation.

Heuristic function h: Number of misplaced tiles. Here: 13.
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Heuristic Function Pitfalls: Example Path Planning

h∗:
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Heuristic Function Pitfalls: Example Path Planning

Manhattan Distance, “accurate h”:
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Heuristic Function Pitfalls: Example Path Planning

Manhattan Distance, “inaccurate h”:
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Questionnaire

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

The goal is a set of statements “on(x,y)”.

Question!

Consider h := number of goal statements that are not currently
true. Is the error relative to h∗ bounded by a constant?

(A): Yes. (B): No.

→ No. There are examples where the error grows linearly in n. Example:
Block b1 is currently beneath a stack of bn, . . . , b2 and the goal is
on(b1, b2). Then h(s) = 1 but h∗(s) = 2n (pick/put-down for each
bn, . . . , b2; pick/put-on-b2 for b1).
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Properties of Heuristic Functions

Definition (Admissibility, Consistency). Let Π be a problem with
state space Θ and states S, and let h be a heuristic function for Π. We
say that h is admissible if, for all s ∈ S, we have h(s) ≤ h∗(s). We say
that h is consistent if, for all transitions s

a−→ s′ in Θ, we have
h(s)− h(s′) ≤ c(a).

In other words . . .

Admissibility: lower bound on goal distance.

Consistency: when applying an action a, the heuristic value cannot
decrease by more than the cost of a.
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Properties of Heuristic Functions, ctd.

Proposition (Consistency =⇒ Admissibility). Let Π be a problem,
and let h be a heuristic function for Π. If h is consistent, then h is
admissible.

Proof. We need to show that h(s) ≤ h∗(s) for all s. For states s where
h∗(s) =∞, this is trivial. For all other states, we show the claim by induction
over the length of the cheapest path to a goal state.

Base case: s is a goal state. Then h(s) = 0 by definition of heuristic functions,
so h(s) ≤ h∗(s) = 0 as desired.

Step case: Assume the claim holds for all states s′ with a cheapest goal path of
length n. Say s has a cheapest goal path of length n+ 1, the first transition of
which is s

a−→ s′. By consistency, we have h(s)− h(s′) ≤ c(a) and thus (a)
h(s) ≤ h(s′) + c(a). By construction, s′ has a cheapest goal path of length n
and thus, by induction hypothesis, (b) h(s′) ≤ h∗(s′). By construction, (c)
h∗(s) = h∗(s′) + c(a). Inserting (b) into (a), we get h(s) ≤ h∗(s′) + c(a).
Inserting (c) into the latter, we get h(s) ≤ h∗(s) as desired.
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Properties of Heuristic Functions: Examples

Admissibility and consistency:

Is straight line distance admissible/consistent? Yes. Consistency: If you
drive 100km, then the straight line distance to Moscow can’t decrease by
more than 100km.

Is goal distance of the “reduced puzzle” (slide 15) admissible/consistent?
Yes. Consistency: Moving a tile can’t decrease goal distance in the reduced
puzzle by more than 1. Same for misplaced tiles/Manhattan distance.

Can somebody come up with an admissible but inconsistent heuristic?
To-Moscow with h(SB) = 1000, h(KL) = 100.

→ In practice, admissible heuristics are typically consistent.

Inadmissible heuristics:

Inadmissible heuristics typically arise as approximations of admissible
heuristics that are too costly to compute. (We’ll meet some examples of
this in Chapter 15.)
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Questionnaire

3 missionaries, 3 cannibals.

Boat that holds ≤ 2.

Never leave k missionaries alone with > k cannibals.

Question!

Is h := number of persons at right bank consistent/admissible?

(A): Only consistent.

(C): None.

(B): Only admissible.

(D): Both.

→ (A): No: If h is consistent then it is admissible, so “only consistent” can’t happen
(for any heuristic).

→ (B): No: h is not admissible because a single move of the boat may get more than
1 person to the desired bank (example: 1 missionary and 1 cannibal at the wrong
bank, with the boat).

→ (C): Yes: h is not admissible so it can’t be consistent either.

→ (D): No, see above.
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Before We Begin

Systematic search vs. local search:

Systematic search strategies: No limit on the number of search
nodes kept in memory at any point in time.

→ Guarantee to consider all options at some point, thus complete.

Local search strategies: Keep only one (or a few) search nodes at a
time.

→ No systematic exploration of all options, thus incomplete.

Tree search vs. graph search:

For the systematic search strategies, we consider graph search
algorithms exclusively, i.e., we use duplicate pruning.

There also are tree search versions of these algorithms. These are
easier to understand, but aren’t used in practice. (Maintaining a
complete open list, the search is memory-intensive anyway.)
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Greedy Best-First Search

function Greedy Best-First Search(problem) returns a solution, or failure
node ← a node n with n.state=problem.InitialState
frontier ← a priority queue ordered by ascending h, only element n
explored ← empty set of states
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
explored ← explored ∪n.State
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
if n′.State 6∈explored ∪ States(frontier) then Insert(n′, h(n′), frontier)

Frontier ordered by ascending h.

Duplicates checked at successor generation, against both the
frontier and the explored set.
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Greedy Best-First Search: Route to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374
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Greedy Best-First Search: Route to Bucharest

Subscripts: h. Red nodes: removed by duplicate pruning.

Arad
366

Sibiu
253

Timisoara
329

Zerind
374

Arad Fagaras
176

Oradea
380

Rimnicu
193

Sibiu Bucharest
0
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Greedy Best-First Search: Guarantees

Completeness: Yes, thanks to duplicate elimination and our
assumption that the state space is finite.

Optimality? No (h might lead us to Moscow via Paris).

Can we do better than this?

→ Yes: A∗ is complete and optimal.
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A∗

function A∗(problem) returns a solution, or failure
node ← a node n with n.State=problem.InitialState
frontier ← a priority queue ordered by ascending g + h, only element n
explored ← empty set of states
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
explored ← explored∪n.State
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
if n′.State 6∈explored ∪ States(frontier) then

Insert(n′, g(n′) + h(n′), frontier)
else if ex. n′′ ∈frontier s.t. n′′.State= n′.State and g(n′) < g(n′′) then

replace n′′ in frontier with n′

Frontier ordered by ascending g + h.

Duplicates handled exactly as in uniform-cost search.
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A∗: Route to Bucharest
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A∗: Route to Bucharest

Subscripts: g + h. Red nodes: removed by duplicate pruning (without

subscript), or because of better path (with subscript g).

Arad
0 + 366 = 366

Sibiu
140 + 253 = 393

Timisoara
118 + 329 = 447

Zerind
75 + 374 = 449

Arad Fagaras
239 + 176 = 415

Oradea
291 + 380 = 671

Rimnicu
220 + 193 = 413

Craiova
366 + 160 = 526

Pitesti
317 + 100 = 417

SibiuSibiu Bucharest
450 + 0 = 450

Bucharest
418 + 0 = 418

Craiova
455

Rimnicu
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A∗: Route to Bucharest

Subscripts: g + h. Red nodes: removed by duplicate pruning (without

subscript), or because of better path (with subscript g).
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Questionnaire

Question!

If we set h(s) := 0 for all states s, what does greedy best-first
search become?
(A): Breadth-first search

(C): Uniform-cost search

(B): Depth-first search

(D): Depth-limited search

→ h implies no node ordering at all. The search order is determined by how we break
ties in the open list. We basically get (A) with FIFO, (B) with LIFO, and (C) when
ordering on g (in each case, differences remain in the handling of duplicate states etc).

Question!

If we set h(s) := 0 for all states s, what does A∗ become?

(A): Breadth-first search

(C): Uniform-cost search

(B): Depth-first search

(D): Depth-limited search

→ (C): The only difference between A∗ and uniform-cost search is the use of g + h
instead of g to order the open list.
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Optimality of A∗: Proof, Step 1

Idea: The proof is via a correspondence to uniform-cost search.

→ Step 1: Capture the heuristic function in terms of action costs.

Definition. Let Π be a problem with state space Θ = (S,A, c, T, I, SG),
and let h be a consistent heuristic function for Π. We define the
h-weighted state space as Θh = (S,Ah, ch, T h, I, SG) where:

Ah := {a[s, s′] | a ∈ A, s ∈ S, s′ ∈ S, (s, a, s′) ∈ T}.
ch : Ah 7→ R+

0 is defined by ch(a[s, s′]) := c(a)− [h(s)− h(s′)].

T h = {(s, a[s, s′], s′) | (s, a, s′) ∈ T}.

→ Subtract, from each action cost, the “gain in heuristic value”.

Lemma. Θh is well-defined, i.e., c(a)− [h(s)− h(s′)] ≥ 0.

Proof. By consistency, h(s)− h(s′) ≤ c(a). This implies the claim.
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Optimality of A∗: Proof – Illustration

Example: Finding a route from SB to Moscow

States: P (Paris), SB, DD (Dresden), M (Moscow).

Actions: c(SBtoP) = 400, c(SBtoDD) = 650, c(DDtoM) = 1950.

Heuristic (straight line distance): h(Paris) = 2500, h(SB) = 2200,
h(DD) = 1700.

Θ and Θh: (Proof Step 1, Definition on previous slide)

P SB DD

M

c = 400

ch = 700

c = 650

ch = 150

c = 1950 ch = 250

h = 2500

h = 2200

h = 1700

Optimal solution: (Proof Step 2, Lemma (A) on next slide)

g∗ = 2600 in Θ and g∗ = 400 = 2600− h(SB) in Θh.
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Optimality of A∗: Proof, Step 2

→ Step 2: Identify the correspondence.

Lemma (A). Θ and Θh have the same optimal solutions.

Proof. Let I = s0
a1−→ s1, . . . , sn−1

an−→ sn be a solution in Θ, sn ∈ SG.
The cost of the same path in Θh is [−h(s0) + c(a1) + h(s1)]+
[−h(s1) + c(a2) + h(s2)]+ · · ·+ [−h(sn−1) + c(an) + h(sn)] =∑n

i=1 c(ai)− h(I) + h(sn) = [
∑n

i=1 c(ai)]− h(I). Thus the costs of
solution paths in Θh are those of Θ, minus a constant. The claim follows.

Lemma (B). The search space of A∗ on Θ is isomorphic to that of
uniform-cost search on Θh.

Proof. Let I = s0
a1−→ s1, . . . , sn−1

an−→ sn be any path in Θ. The g + h
value, used by A∗, is [

∑n
i=1 c(ai)] + h(sn). The g value in Θh, used by

uniform-cost search on Θh, is [
∑n

i=1 c(ai)]− h(I) + h(sn) (see previous
proof). The difference −h(I) is constant, so the ordering of open list is
the same. QED as the duplicate elimination is identical.
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Optimality of A∗: Proof – Illustration

Θ and Θh:

P SB DD

M

c = 400

ch = 700

c = 650

ch = 150

c = 1950 ch = 250

h = 2500

h = 2200

h = 1700

A∗ on Θ (left) and uniform-cost search on Θh (right): (Proof Step 2,
Lemma (B) on previous slide)

SB
g + h = 2200

P
g + h = 2900

DD
g + h = 2350

M
g + h = 2600

c = 400 c = 650

c = 1950

SB
g = 0

P
g = 700

DD
g = 150

M
g = 400

ch = 700 ch = 150

ch = 250
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Optimality of A∗: Proof, Step 3

→ Step 3: Put the pieces together.

Theorem (Optimality of A∗). Let Π be a problem, and let h be a
heuristic function for Π. If h is consistent, then the solution returned by
A∗ (if any) is optimal.

Proof. Denote by Θ the state space of Π. Let ~s(A∗,Θ) be the solution
returned by A∗ run on Θ. Denote by ~S(UCS,Θh) the set of solutions
that could in principle be returned by uniform-cost search run on Θh.

By Lemma (B), ~s(A∗,Θ) ∈ ~S(UCS,Θh): With appropriate tie-breaking
between nodes with identical g value, uniform cost search will return
~s(A∗,Θ). By optimality of uniform-cost search (Chapter 4), every
element of ~S(UCS,Θh) is an optimal solution for Θh. Thus ~s(A∗,Θ) is
an optimal solution for Θh. With Lemma (A), this implies that ~s(A∗,Θ)
is an optimal solution for Θ, which is what we needed to prove.
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Optimality of A∗: Different Variants

Our variant of A∗ does duplicate elimination but not re-opening.

Re-opening: check, when generating a node n containing state s that is
already in the explored set, whether (*) the new path to s is cheaper. If
so, remove s from the explored set and insert n into the frontier.

With a consistent heuristic, (*) can’t happen so we don’t need re-opening
for optimality.

Given admissible but inconsistent h, if we either don’t use duplicate
elimination at all, or use duplicate elimination with re-opening, then A∗ is
optimal as well. Hence the well-known statement “A∗ is optimal if h is
admissible”.

→ But for our variant (as per slide 29), being admissible is NOT enough
for optimality! Frequent implementation bug!

→ Recall: In practice, admissible heuristics are typically consistent. That’s why
I chose to present this variant.
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And now, let’s relax a bit . . .

https://www.youtube.com/channel/UCXsg2PT89piH2vB_R0Kd-Lw

https://www.movingai.com/SAS/

More videos: http://movingai.com/

→ Illustrations of various issues in heuristic search/A∗ that go deeper
than our introductory material here.

Koehler and Torralba Artificial Intelligence Chapter 4: Classical Search, Part II 38/61

https://www.youtube.com/channel/UCXsg2PT89piH2vB_R0Kd-Lw
https://www.movingai.com/SAS/
http://movingai.com/


Introduction Heuristic Functions Syst.: Algorithms Syst.: Performance Local Search Conclusion References

Provable Performance Bounds: Extreme Case

Let’s consider an extreme case: What happens if h = h∗?

Greedy Best-First Search:

If all action costs are strictly positive, when we expand a state, at
least one of its successors has strictly smaller h. The search space is
linear in the length of the solution.

If there are 0-cost actions, the search space may still be
exponentially big (e.g., if all actions costs are 0 then h∗ = 0).

A∗:

If all action costs are strictly positive, and we break ties
(g(n) + h(n) = g(n′) + h(n′)) by smaller h, then the search space is
linear in the length of the solution.

Otherwise, the search space may still be exponentially big.
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Provable Performance Bounds: More Interesting Cases?

“Almost perfect” heuristics:

|h∗(n)− h(n)| ≤ c for a constant c

Basically the only thing that lead to some interesting results.

If the state space is a tree (only one path to every state), and there
is only one goal state: linear in the length of the solution [Gaschnig
(1977)].

But if these additional restrictions do not hold: exponential even for
very simple problems and for c = 1 [Helmert and Röger (2008)]!

→ Systematically analyzing the practical behavior of heuristic search
remains one of the biggest research challenges.

→ There is little hope to prove practical sub-exponential-search bounds.
(But there are some interesting insights one can gain → FAI.)
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Empirical Performance: A∗ in the 8-Puzzle

Without Duplicate Elimination; d = length of solution:

Number of search nodes generated
Iterative A∗ with

d Deepening Search misplaced tiles h Manhattan distance h

2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 3644035 227 73
14 - 539 113
16 - 1301 211
18 - 3056 363
20 - 7276 676
22 - 18094 1219
24 - 39135 1641
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Empirical Performance: A∗ in Path Planning

Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/
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Greedy Best-First vs. A∗: Illustration Path Planning

A∗(g + h), “accurate h”:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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I

G

18

18

18

18

18 18 18

18 18

18 18

20 20 20

20

20

20 20

20 20

22 22 22 22 22

22

22 22 22

22 22 22 22 22 22 22 22

22

22

22

22 22 22

24

24

24 24 24

2424

24 24 24 24 24 24 24

→ In A∗ with a consistent heuristic, g + h always increases
monotonically (h cannot decrease by more than g increases).

→ We need more search, in the “right upper half”. This is typical:
Greedy best-first search tends to be faster than A∗.

Koehler and Torralba Artificial Intelligence Chapter 4: Classical Search, Part II 44/61



Introduction Heuristic Functions Syst.: Algorithms Syst.: Performance Local Search Conclusion References

Greedy Best-First vs. A∗: Illustration Path Planning

Greedy best-first search, “inaccurate h”:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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14 13 12
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4 3 2 1

01

91017
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13
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7 6 5

5

4 3

2

2

11

→ Search will be mis-guided into the “dead-end street”.
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Greedy Best-First vs. A∗: Illustration Path Planning

A∗(g + h), “inaccurate h”:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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18 18 18
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24

24

24

24

242424242424

→ We will search less of the “dead-end street”. For very “bad
heuristics”, g + h gives better search guidance than h, and A∗ is faster.
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Greedy Best-First vs. A∗: Illustration Path Planning

A∗(g + h) using h∗:
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→ With h = h∗, g + h remains constant on optimal paths.
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Questionnaire

Question!

1. Is A∗ always at least as fast as uniform-cost search? 2. Does it
always expand at most as many states?

(A): No and no.

(C): No and Yes.

(B): Yes and no.

(D): Yes and yes.

→ Regarding 1.: No, simply because computing h takes time. So the overall
runtime may get worse.

→ Regarding 2.: “Yes, but”. Setting h(s) := 0 for uniform-cost search, both
algorithms expand only states s where g∗(s) + h(s) ≤ g∗, and must expand all
states where g∗(s) + h(s) < g∗.
Non-zero h can only reduce the latter. Which s with g∗(s) + h(s) = g∗ are
explored depends on the tie-breaking used (which state to expand if there is
more than one state with minimal g + h in the open list). So the answer is “yes
but only if the tie-breaking in both algorithms is the same”.
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Local Search

Do you “think through all possible options” before
choosing your path to the Mensa?

→ Sometimes, “going where your nose leads you” works quite well.

What is the computer’s “nose”?

→ Local search takes decisions based on the h values of immediate
neighbor states.
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Hill Climbing

function Hill-Climbing(problem)
n ← a node n with n.state=problem.InitialState
loop do

n′ ← among child nodes n′ of n with minimal h(n′),
randomly pick one

if h(n′) ≥ h(n) then return the path to n
n ← n′

→ Hill-Climbing keeps choosing actions leading to a direct successor
state with best heuristic value. It stops when no more immediate
improvements can be made.

Alternative name (more fitting, here): Gradient-Descent.

Often used in optimization problems where all “states” are feasible
solutions, and we can choose the search neighborhood (“child
nodes”) freely. (Return just n.State, rather than the path to n)
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Local Search: Guarantees and Complexity

Guarantees:

Completeness: No. Search ends when no more immediate
improvements can be made (= local minimum, up next). This is not
guaranteed to be a solution.

Optimality: No, for the same reason.

Complexity:

Time: We stop once the value doesn’t strictly increase, so the state
space size is a bound.
→ Note: This bound is (a) huge, and (b) applies to a single run of
Hill-Climbing, which typically does not find a solution.

Memory: Basically no consumption: O(b) states at any moment in
time.
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Hill Climbing: Example 8-Queens Problem
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Problem: Place the queens so that they
don’t attack each other.

Heuristic: Number of pairs attacking
each other.

Neighborhood: Move any queen within
its column.

→ Starting from random initialization, solves only 14% of cases.
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A Local Minimum in the 8-Queens Problem

→ Current h value is? 1. To get h = 0, we must move either of the 2
queens involved in the conflict. But every such move results in at least 2
new conflicts, so this is a local minimum.
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Local Search: Difficulties

Difficulties:

Local minima: All neighbors look worse (have a worse h value) than the
current state (e.g.: previous slide).

→ If we stop, the solution may be sub-optimal (or not even feasible). If we
don’t stop, where to go next?

Plateaus: All neighbors have the same h value as the current state.

→ Moves will be chosen completely at random.

Strategies addressing these:

Re-start when reaching a local minimum, or when we have spent a certain
amount of time without “making progress”.

Do random walks in the hope that these will lead out of the local
minimum/plateau.

→ Configuring these strategies requires lots of algorithm parameters. Selecting
good values is a big issue in practice. (Cross your fingers . . . )
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Hill Climbing With Sideways Moves: Example 8-Queens
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14 Heuristic: Number of pairs attacking
each other.

Neighborhood: Move any queen within
its column.

Sideways Moves: In contrast to
slide 50, allow up to 100 consecutive
moves in which the h value does not get
better.

→ Starting from random initialization, solves 94% of cases!

→ Successful local search procedures often combine randomness
(exploration) with following the heuristic (exploitation).
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One (Out of Many) Other Local Search Strategies:
Simulated Annealing

Idea: Taking inspiration from processes in physics (objects cooling
down), inject “noise” systematically: first a lot, then gradually less.

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current
next←a randomly selected successor ofcurrent
∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next
else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8

→ Used since early 80s for VSLI Layout and other optimization problems.
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Questionnaire

Question!

Can local minima occur in route planning with h :=straight line
distance?
(A): Yes. (B): No.

→ Yes, namely if, from the current position, all roads lead away from the
target. For example, following straight line distance from Rome to Egypt
will lead you to? A beach in southern Italy . . . (similar for the dead-end
street with Manhattan Distance in the path planning “bad case”, cf.
slide 18).
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Questionnaire, ctd.

Question!

What is the maximum size of plateaus in the 15-puzzle with
h :=Manhattan distance?
(A): 0

(C): 2

(B): 1

(D): ∞

→ 0: Any move in the 15-puzzle changes the position of exactly one tile
x. So the Manhattan distance changes for x and remains the same for all
other tiles, thus the overall Manhattan distance changes. So the h value
of every neighbor is different from the current one, and there aren’t any
plateaus.
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Summary

Heuristic functions h map each state to an estimate of its goal
distance. This provides the search with knowledge about the
problem at hand, thus making it more focussed.

h is admissible if it lower-bounds goal distance. h is consistent if
applying an action cannot reduce its value by more than the action’s
cost. Consistency implies admissibility. In practice, admissible
heuristics are typically consistent.

Greedy best-first search explores states by increasing h. It is
complete but not optimal.

A∗ explores states by increasing g + h. It is complete. If h is
consistent, then A∗ is optimal. (If h is admissible but not
consistent, then we need to use re-opening to guarantee optimality.)

Local search takes decisions based on its direct neighborhood. It is
neither complete nor optimal, and suffers from local minima and
plateaus. Nevertheless, it is often successful in practice.
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Topics We Didn’t Cover Here

Bounded Sub-optimal Search: Giving a guarantee weaker than “optimal”
on the solution, e.g., within a constant factor W of optimal.

Limited-Memory Heuristic Search: Hybrids of A∗ with depth-first search
(using linear memory), algorithms allowing to make best use of a given
amount M of memory, . . .

External Memory Search: Store the open/closed list on the hard drive,
group states to minimize the number of drive accesses.

Search on the GPU: How to use the GPU for part of the search work?

Real-Time Search: What if there is a fixed deadline by which we must
return a solution? (Often: fractions of seconds . . . )

Lifelong Search: When our problem changes, how can we re-use
information from previous searches?

Non-Deterministic Actions: What if there are several possible outcomes?

Partial Observability: What if parts of the world state are unknown?

Reinforcement Learning Problems: What if, a priori, the solver does not
know anything about the world it is acting in?
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Reading

Chapter 3: Solving Problems by Searching, Sections 3.5 and 3.6 [Russell
and Norvig (2010)].

Content: Section 3.5: A less formal account of what I cover in “Systematic
Search Strategies”. My main changes pertain to making precise how
Greedy Best-First Search and A∗ handle duplcate checking: Imho, with
respect to this aspect RN is much too vague. For A∗, not getting this
right is the primary source of bugs leading to non-optimal solutions.

Section 3.6 (and parts of Section 3.5): A less formal account of what I
cover in “Heuristic Functions”. Gives many complementary explanations,
nice as additional background reading.

Chapter 4: Beyond Classical Search, Section 4.1 [Russell and Norvig
(2010)].

Content: Similar to what I cover in “Local Search Strategies”, except it
mistakenly acts as if local search could not be used to solve classical search
problems. Discusses also Genetic Algorithms, and is nice as additional
background reading.
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